A214969 Decimal representation of Sum{d(i)*3^i: i=0,1,...}, where Sum{d(i)*2^i: i=0,1,...} is the base 2 representation of sqrt(2).
1, 1, 5, 2, 7, 2, 1, 2, 8, 3, 5, 4, 0, 5, 8, 2, 9, 0, 6, 8, 0, 8, 3, 0, 3, 3, 0, 1, 9, 9, 0, 9, 6, 4, 3, 5, 6, 8, 0, 1, 4, 2, 5, 7, 5, 7, 6, 5, 6, 3, 7, 6, 1, 8, 5, 5, 2, 7, 1, 1, 2, 9, 2, 6, 0, 1, 1, 1, 8, 1, 8, 5, 1, 4, 3, 4, 2, 0, 2, 4, 8, 4, 5, 3, 6, 4, 6, 8, 7, 2, 7, 6, 6, 5, 7, 6, 7, 6, 0
Offset: 1
Examples
1.1527212835405829068083033019909643568... = 1 + 1/3^2 + 1/3^3 + 1/3^5 + ... obtained from sqrt(2) = 1 + 1/2^2 + 1/2^3 + 1/2^5 + ... .
References
- Clark Kimberling, Fractal change-of-base functions, Advances and Applications in Mathematical Sciences, 12 (2013), 255-261.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A214970
Programs
-
Mathematica
f[x_, b_, c_, d_] := FromDigits[RealDigits[x, b, d], c] N[f[Sqrt[2], 2, 3, 500], 120] RealDigits[%] (* A214969 *) (* second program: self-similar (fractal) graphs *) f[x_, b_, c_, digits_] := FromDigits[RealDigits[x, b, digits], c] Plot[f[x, 2, 3, 150], {x, 0, 1}, PlotPoints -> 300] Plot[f[x, 2, 3, 150], {x, 0, 1/2}, PlotPoints -> 300] Plot[f[x, 2, 3, 150], {x, 0, (1/2)^2}, PlotPoints -> 300] Plot[f[x, 2, 3, 150], {x, 0, (1/2)^3}, PlotPoints -> 300]
Comments