cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214974 Numbers k for which A116543(k) = A007895(k); i.e., the Lucas and Zeckendorf representations of k have the same length.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 14, 15, 17, 22, 27, 28, 36, 38, 41, 43, 44, 46, 52, 58, 59, 61, 62, 66, 69, 74, 75, 81, 84, 94, 95, 96, 98, 107, 112, 114, 117, 119, 120, 122, 128, 131, 136, 139, 148, 152, 153, 154, 155, 159, 161, 164, 173, 175, 176, 181, 182, 184, 185
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2012

Keywords

Examples

			k...Lucas.....Zeckendorf....counter
1...1.........1.............a(1)= 1
2...2.........2.............a(2)= 2
3...3.........3.............a(3)= 3
4...4.........3+1
5...4+1.......5
6...4+2.......5+1...........a(4)= 6
7...7.........5+2
8...7+1.......8
9...7+2.......8+1...........a(5)= 9
		

Crossrefs

Programs

  • Mathematica
    u = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 50}]]];
    u1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, u]][[2,1]], # > 0 &]] &, Range[1000]];
    v = Reverse[Table[Fibonacci[n + 1], {n, 1, 50}]];
    v1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, v]][[2,1]], # > 0 &]] &, Range[1000]];
    s[n_] := If[u1[[n]] == v1[[n]], 1, 0];
    s1 = Table[s[n], {n, 1, 200}];
    f1 = Flatten[Position[s1, 1]] (* A214974 *)
    s[n_] := If[u1[[n]] < v1[[n]], 1, 0];
    s2 = Table[s[n], {n, 1, 200}];
    f2 = Flatten[Position[s2, 1]] (* A214975 *)
    s[n_] := If[u1[[n]] > v1[[n]], 1, 0];
    s3 = Table[s[n], {n, 1, 200}];
    f3 = Flatten[Position[s3, 1]] (* A214976 *)
    (* Peter J. C. Moses *)

A214975 Numbers k for which A116543(k) < A007895(k); i.e., the Lucas representation of k is shorter than the Zeckendorf representation.

Original entry on oeis.org

4, 7, 11, 12, 18, 19, 20, 25, 29, 30, 31, 32, 33, 40, 47, 48, 49, 50, 51, 53, 54, 65, 67, 72, 76, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 101, 105, 106, 108, 109, 116, 123, 124, 125, 126, 127, 129, 130, 132, 133, 134, 135, 137, 138, 140, 141, 142, 143, 156
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2012

Keywords

Examples

			k...Lucas.....Zeckendorf....counter
1...1.........1
2...2.........2
3...3.........3
4...4.........3+1...........a(1) = 4
5...4+1.......5
6...4+2.......5+1
7...7.........5+2...........a(2) = 7
8...7+1.......8
9...7+2.......8+1
		

Crossrefs

Programs

Showing 1-2 of 2 results.