This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214977 #7 Dec 04 2016 19:46:30 %S A214977 1,2,3,4,6,8,9,11,13,15,16,18,20,22,24,27,30,31,33,35,37,39,42,45,47, %T A214977 50,53,56,57,59,61,63,65,68,71,73,76,79,82,84,87,90,93,96,100,104,105, %U A214977 107,109,111,113,116,119,121,124,127,130,132,135,138,141,144 %N A214977 Number of terms in Lucas representations of 1,2,...,n. %C A214977 See the conjecture at A214979. %H A214977 Clark Kimberling, <a href="/A214977/b214977.txt">Table of n, a(n) for n = 1..10000</a> %e A214977 n..Lucas(n)..# terms...A214977(n) %e A214977 1..1.........1.........1 %e A214977 2..2.........1.........2 %e A214977 3..3.........1.........3 %e A214977 4..4.........1.........4 %e A214977 5..4+1.......2.........6 %e A214977 6..4+2.......2.........8 %e A214977 7..7.........1.........9 %e A214977 8..7+1.......2.........11 %e A214977 9..7+2.......2.........13 %t A214977 z = 200; s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]]; t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]]; u[n_] := Sum[t1[[k]], {k, 1, n}]; u1 = Table[u[n], {n, 1, z}] %t A214977 (* _Peter J. C. Moses_, Oct 18 2012 *) %Y A214977 Cf. A214978, A214979, A214980, A214981, A000032. %K A214977 nonn %O A214977 1,2 %A A214977 _Clark Kimberling_, Oct 22 2012