This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214979 #11 Feb 05 2021 18:18:26 %S A214979 0,0,0,1,0,0,1,0,0,0,1,2,1,1,1,0,0,1,2,3,2,2,1,0,1,0,0,0,1,2,3,4,6,4, %T A214979 3,3,2,2,1,2,2,1,1,1,0,0,1,2,3,4,6,6,7,9,7,6,5,5,5,4,4,4,2,1,2,2,3,2, %U A214979 2,1,0,1,0,0,0,1,2,3,4,6,6,7,9,9,10,11,13,15,13,12,11,9,8,8,8,8 %N A214979 A179180 - A214977. %C A214979 Let U(n) and V(n) be the number of terms in the Lucas representations and Zeckendorf (Fibonacci) representations, respectively, of all the numbers 1,2,...,n. Then a(n) = V(n) - U(n). Conjecture: a(n) >= 0 for all n, and a(n) = 0 for infinitely many n. %H A214979 Clark Kimberling, <a href="/A214979/b214979.txt">Table of n, a(n) for n = 1..10000</a> %H A214979 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5. %e A214979 (See A214977 and A179180.) %t A214979 z = 200; %t A214979 s = Reverse[Sort[Table[LucasL[n - 1], {n, 1, 70}]]]; %t A214979 t1 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]]; %t A214979 u[n_] := Sum[t1[[k]], {k, 1, n}] %t A214979 u1 = Table[u[n], {n, 1, z}] (* A214977 *) %t A214979 s = Reverse[Table[Fibonacci[n + 1], {n, 1, 70}]]; %t A214979 t2 = Map[Length[Select[Reap[FoldList[(Sow[Quotient[#1, #2]]; Mod[#1, #2]) &, #, s]][[2,1]], # > 0 &]] &, Range[z]]; %t A214979 v[n_] := Sum[t2[[k]], {k, 1, n}] %t A214979 v1 = Table[v[n], {n, 1, z}] (* A179180 *) %t A214979 w=v1-u1 (* A214979 *) %t A214979 Flatten[Position[w, 0]] (* A214980 *) %t A214979 (* _Peter J. C. Moses_, Oct 18 2012 *) %Y A214979 Cf. A214977, A179180, A214980, A214981, A000032, A000045. %K A214979 nonn %O A214979 1,12 %A A214979 _Clark Kimberling_, Oct 22 2012