This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214981 #18 Feb 05 2021 18:18:44 %S A214981 1,2,3,4,5,7,8,9,11,13,14,16,17,19,21,23,25,26,28,30,31,33,35,37,39, %T A214981 41,44,46,47,49,51,53,55,56,58,60,62,64,66,69,71,73,76,79,81,84,85,87, %U A214981 89,91,93,95,98,100,101,103,105,107,109,111,114,116,118,121,124 %N A214981 Number of terms in the greedy Lucas-and-Fibonacci representations of 1,2,...,n; partial sums of A214973. %C A214981 For comparison with Zeckendorf (Fibonacci) representations, it is conjectured that the limit of A179180(n)/A214981(n) exists and is between 1.2 and 1.4. %H A214981 Clark Kimberling, <a href="/A214981/b214981.txt">Table of n, a(n) for n = 1..10000</a> %H A214981 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5. %e A214981 The basis is B = (1,2,3,4,5,7,8,11,13,18,21,29,34,47,55,...), composed of Fibonacci numbers and Lucas numbers. Representations of positive integers using the greedy algorithm on B: %e A214981 n repres. # terms a(n) %e A214981 1 1 1 1 %e A214981 2 2 1 2 %e A214981 3 3 1 3 %e A214981 4 4 1 4 %e A214981 5 5 1 5 %e A214981 6 5+1 2 7 %e A214981 7 7 1 8 %e A214981 8 8 1 9 %e A214981 9 8+1 2 11 %e A214981 10 8+2 2 13 %e A214981 27 21+5+1 3 44 %t A214981 (See the program at A214973.) %Y A214981 Cf. A000032, A000045, A179180, A214973, A214977, A214979, A214980, A214981. %K A214981 nonn %O A214981 1,2 %A A214981 _Clark Kimberling_, Oct 22 2012 %E A214981 Edited by _Clark Kimberling_, Jun 13 2020