This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214982 #19 Feb 17 2018 20:02:19 %S A214982 0,1,6,45,300,2080,14196,97461,667590,4576825,31367160,215001216, %T A214982 1473620616,10100397385,69229018950,474503107365,3252291758436, %U A214982 22291541752096,152788493829180,1047227932532925,7177806988136070 %N A214982 a(n) = (Fibonacci(5n)/Fibonacci(n) - 5)/50. %C A214982 See the comments at A028412. %H A214982 Clark Kimberling, <a href="/A214982/b214982.txt">Table of n, a(n) for n = 1..1000</a> %H A214982 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5, 15, -15, -5, 1). %F A214982 a(n) = (Fibonacci(5n)/Fibonacci(n) - 5)/50. %F A214982 Empirical G.f.: -x^2*(x+1)/((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - _Colin Barker_, Nov 22 2012 %F A214982 a(n) = 5*a(n-1) + 15*a(n-2) - 15*a(n-3) - 5*a(n-4) + a(n-5), with a(1)=0, a(2)=1, a(3)=6, a(4)=45, a(5)=300. - _Harvey P. Dale_, Nov 03 2013 %F A214982 a(n) = (1/2)*Fibonacci(n)^2*(Fibonacci(n)^2 + (-1)^n) shows that a(n) is always an integer. - _Peter Bala_, Nov 29 2013 %t A214982 (See A028412.) %t A214982 Table[(Fibonacci[5n]/Fibonacci[n]-5)/50,{n,25}] (* or *) LinearRecurrence[ {5,15,-15,-5,1},{0,1,6,45,300},30] (* _Harvey P. Dale_, Nov 03 2013 *) %Y A214982 Cf. A000045, A028412. %K A214982 nonn %O A214982 1,3 %A A214982 _Clark Kimberling_, Oct 28 2012