A214984 Array: T(m,n) = (F(m) + F(2*m) + ... + F(n*m))/F(m), by antidiagonals, where F = A000045 (Fibonacci numbers).
1, 2, 1, 4, 4, 1, 7, 12, 5, 1, 12, 33, 22, 8, 1, 20, 88, 94, 56, 12, 1, 33, 232, 399, 385, 134, 19, 1, 54, 609, 1691, 2640, 1487, 342, 30, 1, 88, 1596, 7164, 18096, 16492, 6138, 872, 48, 1, 143, 4180, 30348, 124033, 182900, 110143, 25319, 2256, 77, 1
Offset: 1
Examples
Northwest corner: 1...2....4.....7......12......20 1...4....12....33.....88......232 1...5....22....94.....399.....1691 1...8....56....385....2640....18096 1...12...134...1487...16492...182900
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Programs
-
Mathematica
F[n_] := Fibonacci[n]; L[n_] := LucasL[n]; t[m_, n_] := (1/F[m])*Sum[F[m*k], {k, 1, n}] TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]
Formula
For odd-numbered rows (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered rows (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-2)).
Comments