A214985 Array: T(m,n) = (F(n) + F(2*n) + ... + F(n*m))/F(n), by antidiagonals; transpose of A214984.
1, 1, 2, 1, 4, 4, 1, 5, 12, 7, 1, 8, 22, 33, 12, 1, 12, 56, 94, 88, 20, 1, 19, 134, 385, 399, 232, 33, 1, 30, 342, 1487, 2640, 1691, 609, 54, 1, 48, 872, 6138, 16492, 18096, 7164, 1596, 88, 1, 77, 2256, 25319, 110143, 182900, 124033, 30348, 4180, 143
Offset: 1
Examples
Northwest corner: 1....1.....1......1.......1 2....4.....5......8.......12 4....12....22.....56......134 7....33....94.....385.....1487 12...88....399....2640....16492 20...232...1691...18096...182900
Links
- Clark Kimberling, Antidiagonals n = 1..60, flattened
Programs
-
Mathematica
F[n_] := Fibonacci[n]; L[n_] := LucasL[n]; t[m_, n_] := (1/F[n])*Sum[F[k*n], {k, 1, m}] TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] Flatten[Table[t[k, n + 1 - k], {n, 1, 12}, {k, 1, n}]]
Formula
For odd-numbered columns (m odd):
T(m,n) = (F(m*n+m) + F(m*n) - F(m))/(F(m)*L(m)).
For even-numbered columns (m even):
T(m,n) = (F(m*n+m) - F(m*n) - F(m))/(F(m)*(L(m)-1)).
Comments