A214986 Power ceiling array for the golden ratio, by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 8, 5, 1, 1, 12, 21, 22, 7, 1, 1, 20, 55, 94, 48, 12, 1, 1, 33, 144, 399, 329, 134, 18, 1, 1, 54, 377, 1691, 2255, 1487, 323, 30, 1, 1, 88, 987, 7164, 15456, 16492, 5796, 872, 47, 1, 1, 143, 2584, 30348, 105937, 182900
Offset: 1
Examples
Northwest corner: 1...1....1.....1......1.......1 1...2....4.....7......12......20 1...3....8.....21.....55......144 1...5....22....94.....399.....1691 1...7....48....329....2255....15456 1...19...134...1487...16492...182900
Links
- Clark Kimberling, Antidiagonals n = 1..35, flattened
- Eric Weisstein's World of Mathematics, Power Ceilings
Programs
-
Mathematica
r = GoldenRatio; s[x_, 0] := 1; s[x_, n_] := Ceiling[x*s[x, n - 1]]; t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}] ] u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]
Comments