cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214987 Power round array for the golden ratio, by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 4, 1, 1, 8, 21, 17, 7, 1, 1, 13, 55, 72, 48, 11, 1, 1, 21, 144, 305, 329, 122, 18, 1, 1, 34, 377, 1292, 2255, 1353, 323, 29, 1, 1, 55, 987, 5473, 15456, 15005, 5796, 842, 47, 1, 1, 89, 2584, 23184, 105937, 166408, 104005
Offset: 1

Views

Author

Clark Kimberling, Oct 28 2012

Keywords

Comments

The term "power round sequence" (after "power ceiling sequence" at A214986) extends to sequences generated by recurrences P(n) = round(x*P(n-1)) + g(n), and "power round functions" f(x) to the limit of P(n)/x^n in case x>1 and g(n)/x^n -> 0. Suppose that h is a nonnegative integer and g(n) is a constant. If x is a positive integer power of the golden ratio r, then f(x), in many cases, lies in the field Q(sqrt(5)). Examples matching rows of A214987, using g(n) = 0, follow:
...
x ... P . .. . . f(x)
r ... A000045 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^2 . A001906 .. 1/2 + 3*sqrt(5)/10 = 1.1708... (A176015)
r^3 . A001076 .. 1/2 + sqrt(5)/5 = 0.9472...
r^4 . A004187 .. 1/2 + 7*sqrt(5)/30 = 1.0217...
In general, f(r^k) = 1/2 + sqrt(5)*L(k)/(10*F(k)) for k>1, where L = A000032 (Lucas numbers) and F = A000045 (Fibonacci numbers).
(row 2 of A214987) = (row 1 of A213978 except for its initial 1)
(row n of A214987) = (row n-1 of A213978 for n>2).

Examples

			1...1...1....1.....1......1
1...2...3....5.....8......13
1...3...8....21....5......144
1...4...17...72....305....1292
1...7...48...329...2255...15456
		

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[x_, 0] := 1; s[x_, n_] := Round[x*s[x, n - 1]];
    t = TableForm[Table[s[r^m, n], {m, 0, 10}, {n, 0, 10}]  ]
    u = Flatten[Table[s[r^m, n - m], {n, 0, 10}, {m, 0, n}]]