This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214995 #21 Oct 31 2024 01:37:03 %S A214995 18,322,5779,103699,1860804,33390772,599173093,10751724901, %T A214995 192931875126,3462022027366,62123464617463,1114760341086967, %U A214995 20003562674947944,358949367807976024,6441085057868620489,115580581673827192777,2074009385071020849498 %N A214995 Power ceiling-floor sequence of (golden ratio)^6. %C A214995 See A214992 for a discussion of power ceiling-floor sequence and the power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = (golden ratio)^6, and the limit p3(r) = 17.94722275971790615684809... %H A214995 Clark Kimberling, <a href="/A214995/b214995.txt">Table of n, a(n) for n = 0..250</a> %H A214995 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,17,-1). %F A214995 a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x=((1+sqrt(5))/2)^6 and a(0) = ceiling(x). %F A214995 a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). %F A214995 G.f.: (18 + 16*x - x^2)/((1 + x)*(1 - 18*x + x^2)). %F A214995 a(n) = (4*(-1)^n+(718-321*sqrt(5))*(9+4*sqrt(5))^(-n)+(9+4*sqrt(5))^n*(718+321*sqrt(5)))/80. - _Colin Barker_, Mar 04 2016 %F A214995 E.g.f.: exp(-x)*(2 + exp(10*x)*(718*cosh(4*sqrt(5)*x) + 321*sqrt(5)*sinh(4*sqrt(5)*x)))/40. - _Stefano Spezia_, Oct 28 2024 %e A214995 a(0) = ceiling(r) = [17.9] = 18 , where r=(1+sqrt(5))^6; %e A214995 a(1) = floor(18*r) = 322; a(2) = ceiling(322*r ) = 5779. %t A214995 x = GoldenRatio^6; z = 30; (* z = # terms in sequences *) %t A214995 z1 = 100; (* z1 = # digits in approximations *) %t A214995 f[x_] := Floor[x]; c[x_] := Ceiling[x]; %t A214995 p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; %t A214995 p1[n_] := f[x*p1[n - 1]] %t A214995 p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] %t A214995 p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] %t A214995 p4[n_] := c[x*p4[n - 1]] %t A214995 Table[p1[n], {n, 0, z}] (* A007805 *) %t A214995 Table[p2[n], {n, 0, z}] (* A156085 *) %t A214995 Table[p3[n], {n, 0, z}] (* A214995 *) %t A214995 Table[p4[n], {n, 0, z}] (* A049660 *) %t A214995 Table[p4[n] - p1[n], {n, 0, z}] (* A049660 *) %t A214995 Table[p3[n] - p2[n], {n, 0, z}] (* A099279 *) %t A214995 LinearRecurrence[{17,17,-1},{18,322,5779},30] (* _Harvey P. Dale_, Feb 25 2013 *) %o A214995 (PARI) Vec((18+16*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^20)) \\ _Colin Barker_, Mar 04 2016 %Y A214995 Cf. A214992, A007805, A156085, A049660. %K A214995 nonn,easy %O A214995 0,1 %A A214995 _Clark Kimberling_, Nov 09 2012