This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A214996 #39 Oct 28 2024 02:00:49 %S A214996 3,11,37,127,433,1479,5049,17239,58857,200951,686089,2342455,7997641, %T A214996 27305655,93227337,318298039,1086737481,3710353847,12667940425, %U A214996 43251054007,147668335177,504171232695,1721348260425,5877050576311,20065505784393,68507921984951 %N A214996 Power floor-ceiling sequence of 2+sqrt(2). %C A214996 See A214992 for a discussion of power floor-ceiling sequence and power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p2(r) = (11 + 8*sqrt(2))/7. %C A214996 From _Greg Dresden_, Jun 02 2020: (Start) %C A214996 a(n) is the number of ways to tile a 2 X (n+1) strip, with one extra square at the top left corner, using 1 X 1 squares, 2 X 2 squares, and 1 X 2 dominoes (either horizontal or vertical). This picture shows a(1) = 11. %C A214996 _ _ _ _ _ _ _ _ _ _ _ %C A214996 |_|_ |_|_ | |_ |_|_ |_|_ |_|_ |_|_ | |_ | |_ |_|_ |_|_ %C A214996 |_|_| | | |_|_| | |_| |_| | |___| |_|_| |_|_| |_| | |___| | | | %C A214996 |_|_| |___| |_|_| |_|_| |_|_| |_|_| |___| |___| |_|_| |___| |_|_| %C A214996 (End) %H A214996 Clark Kimberling, <a href="/A214996/b214996.txt">Table of n, a(n) for n = 0..250</a> %H A214996 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,2,-2). %F A214996 a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = floor(x). %F A214996 a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3). %F A214996 G.f.: (3 + 2*x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3). %F A214996 a(n) = (1/7)*((-1)^(1+n) + (11-8*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(11+8*sqrt(2))). - _Colin Barker_, Nov 13 2017 %e A214996 a(0) = floor(r) = 3, where r = 2+sqrt(2). %e A214996 a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37. %t A214996 x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *) %t A214996 z1 = 100; (* z1 = # digits in approximations *) %t A214996 f[x_] := Floor[x]; c[x_] := Ceiling[x]; %t A214996 p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x]; %t A214996 p1[n_] := f[x*p1[n - 1]] %t A214996 p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]] %t A214996 p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]] %t A214996 p4[n_] := c[x*p4[n - 1]] %t A214996 Table[p1[n], {n, 0, z}] (* A007052 *) %t A214996 Table[p2[n], {n, 0, z}] (* A214996 *) %t A214996 Table[p3[n], {n, 0, z}] (* A214997 *) %t A214996 Table[p4[n], {n, 0, z}] (* A007070 *) %o A214996 (PARI) Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ _Colin Barker_, Nov 13 2017 %o A214996 (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // _G. C. Greubel_, Feb 02 2018 %Y A214996 Cf. A214992, A007052, A214997, A007070, A052543. %K A214996 nonn,easy %O A214996 0,1 %A A214996 _Clark Kimberling_, Nov 10 2012