cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A214999 Power floor sequence of sqrt(5).

Original entry on oeis.org

2, 4, 8, 17, 38, 84, 187, 418, 934, 2088, 4668, 10437, 23337, 52183, 116684, 260913, 583419, 1304564, 2917093, 6522818, 14585464, 32614088, 72927317, 163070438, 364636584, 815352188, 1823182917, 4076760937, 9115914583
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor sequence and the power floor function, p1(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p1(r) = 1.4935514451954997630823098687087959696356...

Examples

			a(0) = [r] = 2, where r = sqrt(5); a(1) = [2*r] = 4; a(2) = [4*r] = 8.
		

Crossrefs

Programs

  • Mathematica
    x = Sqrt[5]; z = 30; (* z = # terms in sequences *)
    f[x_] := Floor[x]; c[x_] := Ceiling[x];
    p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
    p1[n_] := f[x*p1[n - 1]]
    p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
    p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
    p4[n_] := c[x*p4[n - 1]]
    Table[p1[n], {n, 0, z}]  (* A214999 *)
    Table[p2[n], {n, 0, z}]  (* A215091 *)
    Table[p3[n], {n, 0, z}]  (* A218982 *)
    Table[p4[n], {n, 0, z}]  (* A218983 *)

Formula

a(n) = [x*a(n-1)], where x=sqrt(5), a(0) = [x].