This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215011 #32 Oct 01 2024 15:44:50 %S A215011 1,4,12,15,20,8,24,12,60,10,60,84,56,40,60,18,36,36,90,120,40,120,24, %T A215011 300,175,252,72,168,140,60,60,60,180,360,120,228,342,252,420,60,40,88, %U A215011 660,60,120,48,48,168,1400,900,252,189,108,180,120,72,252,406,1740 %N A215011 a(n) = least k>0 such that triangular(n) divides Fibonacci(k). %C A215011 Triangular(n)=n*(n+1)/2 is the n-th triangular number. %e A215011 Triangular(2)=3, least k>0 such that 3 divides Fibonacci(k) is k=4, so a(2)=4. %t A215011 lk[n_]:=Module[{k=1,t=(n(n+1))/2},While[Mod[Fibonacci[k],t]!=0,k++];k]; Array[lk,60] (* _Harvey P. Dale_, Jun 19 2021 *) %o A215011 (Python) %o A215011 TOP = 333 %o A215011 prpr = y = 0 %o A215011 prev = k = 1 %o A215011 res = [-1]*TOP %o A215011 while y<TOP-1: %o A215011 for i in range(1, TOP): %o A215011 if res[i]<0 and prev % int(i*(i+1)/2) == 0: %o A215011 res[i] = k %o A215011 y += 1 %o A215011 curr = prpr+prev %o A215011 prpr = prev %o A215011 prev = curr %o A215011 k += 1 %o A215011 for i in range(1, TOP): %o A215011 print(res[i], end=', ') %Y A215011 Cf. A085779 (least k such that triangular(n) divides k!). %Y A215011 Cf. A001177 (least k such that n divides Fibonacci(k)). %Y A215011 Cf. A132632 (least k such that n^2 divides Fibonacci(k)). %Y A215011 Cf. A132633 (least k such that n^3 divides Fibonacci(k)). %Y A215011 Cf. A215453 (least k such that n^n divides Fibonacci(k)). %Y A215011 Cf. A214528 (least k such that n! divides Fibonacci(k)). %Y A215011 Cf. A000217, A000045. %K A215011 nonn %O A215011 1,2 %A A215011 _Alex Ratushnyak_, Aug 08 2012