This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215012 #28 Oct 28 2024 02:01:01 %S A215012 12,18,20,24,40,56,88,104,180,196,224,234,240,360,368,420,464,540,600, %T A215012 650,780,992,1080,1344,1504,1872,1888,1890,1952,2016,2184,2352,2376, %U A215012 2688,3192,3276,3724,3744,4284,4320,4680 %N A215012 Composite numbers n such that sigma(n)/n leaves a remainder which divides n. %C A215012 The numbers and the program were provided by _Charles R Greathouse IV_. %C A215012 If n belongs to the sequence, then sigma(n) = d*n + rem, so sigma(n)/n = d + rem/n. Since rem is a divisor of n, n = rem*r, thus rem/n = 1/r. Then sigma(n)/n = d + 1/r and contfrac(sigma(n)/n) = [d, r], and length(contfrac(sigma(n)/n)) = 2. That is, A071862(n) = 2. - _Michel Marcus_, Aug 29 2012 %H A215012 Donovan Johnson, <a href="/A215012/b215012.txt">Table of n, a(n) for n = 1..1000</a> %e A215012 24 has the divisors 1,2,3,4,6,12,24, which sum to be 60. Divide 60 by 24 and the remainder is 12, which is a divisor of 24. %t A215012 a={}; For[n=1, n<=5000, n++, If[!PrimeQ[n], {s=DivisorSigma[1, n]; If[Mod[n, Mod[s,n]] == 0, AppendTo[a,n]]; }]; ]; a (* _John W. Layman_, Jul 31 2012 *) %t A215012 Select[Range[5000],CompositeQ[#]&&Mod[#,Mod[DivisorSigma[1,#],#]]==0&] // Quiet (* _Harvey P. Dale_, May 24 2019 *) %o A215012 (PARI) is(n)=my(t=sigma(n)%n);t && n%t==0 && !isprime(n) %Y A215012 Cf. A000203, A071862. %K A215012 nonn %O A215012 1,1 %A A215012 _J. M. Bergot_, Jul 31 2012 %E A215012 Terms a(24)-a(41) from _John W. Layman_, Jul 31 2012