A215020 a(n) = log_2( A182105(n) ).
0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 5, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1
Offset: 1
Keywords
Examples
From _Joerg Arndt_, May 27 2016: (Start) The first nonnegative skew-binary numbers (dots denote zeros) are n : [skew-binary] position of change 00: [ . . . . . ] - 01: [ . . . . 1 ] 0 02: [ . . . . 2 ] 0 03: [ . . . 1 . ] 1 04: [ . . . 1 1 ] 0 05: [ . . . 1 2 ] 0 06: [ . . . 2 . ] 1 07: [ . . 1 . . ] 2 08: [ . . 1 . 1 ] 0 09: [ . . 1 . 2 ] 0 10: [ . . 1 1 . ] 1 11: [ . . 1 1 1 ] 0 12: [ . . 1 1 2 ] 0 13: [ . . 1 2 . ] 1 14: [ . . 2 . . ] 2 15: [ . 1 . . . ] 3 16: [ . 1 . . 1 ] 0 17: [ . 1 . . 2 ] 0 18: [ . 1 . 1 . ] 1 19: [ . 1 . 1 1 ] 0 20: [ . 1 . 1 2 ] 0 21: [ . 1 . 2 . ] 1 22: [ . 1 1 . . ] 2 23: [ . 1 1 . 1 ] 0 24: [ . 1 1 . 2 ] 0 25: [ . 1 1 1 . ] 1 26: [ . 1 1 1 1 ] 0 27: [ . 1 1 1 2 ] 0 28: [ . 1 1 2 . ] 1 29: [ . 1 2 . . ] 2 30: [ . 2 . . . ] 3 31: [ 1 . . . . ] 4 32: [ 1 . . . 1 ] 0 33: [ 1 . . . 2 ] 0 ... (End) From _Allan C. Wechsler_, Sep 27 2019 (Start) First few rows of irregular table derived from A007814 (see comments). 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 ... (End)
Links
- Wikipedia, Skew binary number system
Formula
a(n) = A082850(n) - 1. - Omar E. Pol, Jun 18 2019
Comments