cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215020 a(n) = log_2( A182105(n) ).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 5, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 4, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Comments

Apparently the leftmost positions of change with incrementing skew-binary numbers (A169683), see example. - Joerg Arndt, May 27 2016
Irregular table read by rows, where the k-th row counts from 0 up to the ruler function of k, A007814(k). - Allan C. Wechsler, Sep 26 2019

Examples

			From _Joerg Arndt_, May 27 2016: (Start)
The first nonnegative skew-binary numbers (dots denote zeros) are
n :  [skew-binary]  position of change
00:  [ . . . . . ]  -
01:  [ . . . . 1 ]  0
02:  [ . . . . 2 ]  0
03:  [ . . . 1 . ]  1
04:  [ . . . 1 1 ]  0
05:  [ . . . 1 2 ]  0
06:  [ . . . 2 . ]  1
07:  [ . . 1 . . ]  2
08:  [ . . 1 . 1 ]  0
09:  [ . . 1 . 2 ]  0
10:  [ . . 1 1 . ]  1
11:  [ . . 1 1 1 ]  0
12:  [ . . 1 1 2 ]  0
13:  [ . . 1 2 . ]  1
14:  [ . . 2 . . ]  2
15:  [ . 1 . . . ]  3
16:  [ . 1 . . 1 ]  0
17:  [ . 1 . . 2 ]  0
18:  [ . 1 . 1 . ]  1
19:  [ . 1 . 1 1 ]  0
20:  [ . 1 . 1 2 ]  0
21:  [ . 1 . 2 . ]  1
22:  [ . 1 1 . . ]  2
23:  [ . 1 1 . 1 ]  0
24:  [ . 1 1 . 2 ]  0
25:  [ . 1 1 1 . ]  1
26:  [ . 1 1 1 1 ]  0
27:  [ . 1 1 1 2 ]  0
28:  [ . 1 1 2 . ]  1
29:  [ . 1 2 . . ]  2
30:  [ . 2 . . . ]  3
31:  [ 1 . . . . ]  4
32:  [ 1 . . . 1 ]  0
33:  [ 1 . . . 2 ]  0
...
(End)
From _Allan C. Wechsler_, Sep 27 2019 (Start)
First few rows of irregular table derived from A007814 (see comments).
0
0 1
0
0 1 2
0
0 1
0
0 1 2 3
0
0 1
...
(End)
		

Crossrefs

Formula

a(n) = A082850(n) - 1. - Omar E. Pol, Jun 18 2019