cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215022 NegaFibonacci representation code for n.

Original entry on oeis.org

0, 1, 100, 101, 10010, 10000, 10001, 10100, 10101, 1001010, 1001000, 1001001, 1000010, 1000000, 1000001, 1000100, 1000101, 1010010, 1010000, 1010001, 1010100, 1010101, 100101010, 100101000, 100101001, 100100010, 100100000, 100100001, 100100100, 100100101, 100001010
Offset: 0

Views

Author

N. J. A. Sloane, Aug 03 2012

Keywords

Comments

Let F_{-n} be the negative Fibonacci numbers (as defined in the first comment in A039834): F_{-1}=1, F_{-2}=-1, F_{-3}=2, F_{-4}=-3, F_{-5}=5, ..., F_{-n}=(-1)^(n-1)F_n.
Every integer has a unique representation as n = Sum_{k=1..r} c_k F_{-k} for some r, where the c_k are 0 or 1 and no two adjacent c's are 1.
Then a(n) is the concatenation c_r ... c_3 c_2 c_1.

Examples

			4 = 5 - 1 = F_{-5} + F_{-2}, so a(4) = 10010.
		

References

  • Donald E. Knuth, The Art of Computer Programming, Volume 4A, Combinatorial algorithms, Part 1, Addison-Wesley, 2011, pp. 168-171.

Crossrefs

Programs

  • Mathematica
    ind[n_] := Floor[Log[Abs[n]*Sqrt[5] + 1/2]/Log[GoldenRatio]]; f[1] = 1; f[n_] := If[n > 0, i = ind[n - 1]; If[EvenQ[i], i++]; i, i = ind[-n]; If[OddQ[i], i++]; i]; a[n_] := Module[{k = n, s = 0}, While[k != 0, i = f[k]; s += 10^(i - 1); k -= Fibonacci[-i]]; s]; Array[a, 100, 0] (* Amiram Eldar, Oct 15 2019 *)
  • PARI
    a(n)=if(n<2,return(n));my(s=1,k=1,v);while(sCharles R Greathouse IV, Aug 03 2012 [Caution: returns wrong values for some values of n > 15. Amiram Eldar, Oct 15 2019]

Extensions

a(16) inserted and 1 term added by Amiram Eldar, Oct 11 2019