This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215049 #25 Aug 13 2012 16:19:11 %S A215049 2,2,40,335,2498,20886,174368,1507722,13300713 %N A215049 Number of primes of the form 1 + b^8 for 1 < b < 10^n. %C A215049 Primes 1 + b^8 are a form of generalized Fermat primes. It is conjectured that a(n) is asymptotic to 0.261599*li(10^n). %H A215049 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/results.html">Status of the smallest base values yielding Generalized Fermat primes</a> %H A215049 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/stat.html">How many prime numbers appear in a sequence ?</a> %H A215049 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/papers/ccdgfpn.html">A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime numbers (a new method for the search for large primes)</a> %F A215049 a(n) = A214454(8*n) - 1. %e A215049 a(1) = 2 because the only Fermat primes F_3(b) where b<10^1 are the primes: 257, 65537. %t A215049 Table[Length[Select[Range[2,10^n-1]^8 + 1, PrimeQ]], {n, 5}] (* _T. D. Noe_, Aug 01 2012 *) %o A215049 (PARI) a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^8+1)) %Y A215049 Cf. A214454. %K A215049 nonn %O A215049 1,1 %A A215049 _Henryk Dabrowski_, Aug 01 2012