cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215051 Number of primes of the form 1 + b^32 for 1 < b < 10^n.

This page as a plain text file.
%I A215051 #38 Oct 18 2018 11:02:41
%S A215051 0,3,22,146,1062,8963,74951,651537,5740807,51389252
%N A215051 Number of primes of the form 1 + b^32 for 1 < b < 10^n.
%C A215051 Primes 1 + b^32 are a form of generalized Fermat primes.
%C A215051 It is conjectured that a(n) is asymptotic to 0.112903*li(10^n).
%H A215051 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/results.html">Status of the smallest base values yielding Generalized Fermat primes</a>
%H A215051 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/stat.html">How many prime numbers appear in a sequence ?</a>
%H A215051 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/papers/ccdgfpn.html">A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime numbers (a new method for the search for large primes)</a>
%F A215051 a(n) = A214956(32*n) - 1.
%e A215051 a(2) = 3 because the Fermat numbers F_5(b) where b<10^2 are prime only for b = 30, 54, 96.
%t A215051 Table[Length[Select[Range[2,10^n-1]^32 + 1, PrimeQ]], {n, 4}] (* _T. D. Noe_, Aug 01 2012 *)
%o A215051 (PARI) a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^32+1))
%Y A215051 Cf. A214956, A215047, A215048, A215049, A215050, A215057, A215058
%K A215051 nonn,more
%O A215051 1,2
%A A215051 _Henryk Dabrowski_, Aug 01 2012
%E A215051 a(9)-a(10) from _Chai Wah Wu_, Oct 18 2018