cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215057 Number of primes of the form 1 + b^64 for 1 < b < 10^n.

This page as a plain text file.
%I A215057 #16 Aug 10 2020 01:10:49
%S A215057 0,0,8,92,606,4835,41059,354239,3133668
%N A215057 Number of primes of the form 1 + b^64 for 1 < b < 10^n.
%C A215057 Primes 1 + b^64 are a form of generalized Fermat primes.
%C A215057 It is conjectured that a(n) is asymptotic to 0.0616053*li(10^n)
%H A215057 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/results.html">Status of the smallest base values yielding Generalized Fermat primes</a>
%H A215057 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/primes/stat.html">How many prime numbers appear in a sequence ?</a>
%H A215057 Yves Gallot, <a href="http://yves.gallot.pagesperso-orange.fr/papers/ccdgfpn.html">A Problem on the Conjecture Concerning the Distribution of Generalized Fermat Prime numbers (a new method for the search for large primes)</a>
%e A215057 a(3) = 8 because the Fermat numbers F_6(b) where b<10^3 are prime only for b = 102, 162, 274, 300, 412, 562, 592, 728.
%o A215057 (PARI) a(n) = sum(b=1, 10^n/2-1, isprime((2*b)^64+1))
%Y A215057 Cf. A215047, A215048, A215049, A215050, A215051, A215058.
%K A215057 nonn,more
%O A215057 1,3
%A A215057 _Henryk Dabrowski_, Aug 01 2012
%E A215057 a(8)-a(9) from  _Kellen Shenton_, Aug 09 2020