This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215059 #8 Nov 26 2013 13:31:53 %S A215059 1,10,11,12,13,15,20,21,30,31,50,51,1000,1001,1002,1010,1011,1012, %T A215059 1020,1021,1100,1101,1102,1110,1111,1112,1120,1121,1200,1201,1210, %U A215059 1211,1339,1344,1345,1354,1356,1359,1365,1366,1368,1386,1393,1395,1434,1435,1443 %N A215059 Numbers n such that (sum of factorial of decimal digits of n) + (product of factorial of decimal digits of n) is prime. %H A215059 Harvey P. Dale, <a href="/A215059/b215059.txt">Table of n, a(n) for n = 1..1000</a> %e A215059 1345 is in the sequence because (1! + 3! + 4! + 5! ) + (1! * 3! * 4! * 5!) = 151 + 17280 = 17431 is prime. %p A215059 A:= proc(n) add(d!, d=convert(n, base, 10)) ; end proc: %p A215059 B:= proc(n) mul(d!, d=convert(n, base, 10)) ; end proc: %p A215059 isA:= proc(n) isprime(A(n)+B(n)) ; end proc: %p A215059 for n from 1 to 1500 do if isA(n) then printf("%a, ", n) ; end if; end do: %t A215059 fdpQ[n_]:=Module[{f=IntegerDigits[n]!},PrimeQ[Total[f]+Times@@f]]; Select[ Range[1500],fdpQ] (* _Harvey P. Dale_, Nov 26 2013 *) %Y A215059 Cf. A185300. %K A215059 nonn,base,easy %O A215059 1,2 %A A215059 _Michel Lagneau_, Aug 01 2012