This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215066 #41 Sep 08 2022 08:46:03 %S A215066 1,1,7,127,4315,235831,18911467,2091412807,305035062955, %T A215066 56729101908151,13102338649018027,3679320979659518887, %U A215066 1234515698986458346795,487763952468349266962071,224150079034073231822617387,118541831524545132821950527367 %N A215066 Expansion of e.g.f.: Sum_{n>=0} Product_{k=1..n} (exp((2*k-1)*x) - 1). %H A215066 Michael De Vlieger, <a href="/A215066/b215066.txt">Table of n, a(n) for n = 0..234</a> %H A215066 A. Folsom, K. Ono and R. C. Rhoades, <a href="https://www.semanticscholar.org/paper/RAMANUJAN%E2%80%99S-RADIAL-LIMITS-Ono-Rhoades/e9ce236b0b74f08dfbb983970f11d28d87872228">Ramanujan's radial limits</a>, 2013. - From _N. J. A. Sloane_, Feb 09 2013 %H A215066 Hsien-Kuei Hwang and Emma Yu Jin, <a href="https://arxiv.org/abs/1911.06690">Asymptotics and statistics on Fishburn matrices and their generalizations</a>, arXiv:1911.06690 [math.CO], 2019. %F A215066 Folsom et al. give a closed form for a(n). - _N. J. A. Sloane_, Feb 09 2013 %F A215066 E.g.f.: 1 + (exp(x)-1)/(W(0)-exp(x)+1), where W(k) = (exp(x))^(2*k+1) - ((exp(x))^(2*k+3)-1)/W(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Jan 05 2014 %F A215066 a(n) ~ sqrt(6) * 24^n * (n!)^2 / (sqrt(n) * Pi^(2*n+3/2)). - _Vaclav Kotesovec_, May 04 2014 %F A215066 E.g.f.: 1/2*( 1 + Sum_{n>=0} exp((2*n+1)*x)*Product_{k=1..n} (exp((2*k-1)*x) - 1) ). Cf. A053250 and A207569. - _Peter Bala_, May 15 2017 %F A215066 Conjectural g.f.: Sum_{n >= 0} (-1)^n*Product_{k = 1..n} (1 + (-1)^k*exp(- k*t)). Cf. A158690. - _Peter Bala_, Jan 28 2021 %e A215066 E.g.f.: A(x) = 1 + x + 7*x^2/2! + 127*x^3/3! + 4315*x^4/4! + 235831*x^5/5! +... %e A215066 where %e A215066 A(x) = 1 + (exp(x)-1) + (exp(x)-1)*(exp(3*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1) + (exp(x)-1)*(exp(3*x)-1)*(exp(5*x)-1)*(exp(7*x)-1)*(exp(9*x)-1) +... %p A215066 m:= 20; S:= series( add(mul(exp((2*k-1)*x)-1, k=1..j), j=0..m+1), x, m+1): seq(factorial(j)*coeff(S, x, j), j = 0..m); # _G. C. Greubel_, Feb 07 2020 %t A215066 Table[((-1)^n*2*Sum[Sum[n!/(a!*(2b)!*(n-a-2b)!)*(3/2)^a*(5/2)^(2b) * EulerE[2a+2b],{a,0,n}],{b,0,n/2}] + 2*(-1)^n*Sum[n!/((n-2b)!*(2b)!)*(3/2)^(n-2b)*(1/2)^(2b)*EulerE[2n-2b],{b,0,n/2}])/4,{n,0,20}] (* _Vaclav Kotesovec_, May 04 2014 after A. Folsom *) %t A215066 With[{m=20}, CoefficientList[Series[Sum[Product[Exp[(2*k-1)*x] -1, {k, j}], {j, 0, m+2}], {x,0,m}], x]*Range[0, m]!] (* _G. C. Greubel_, Feb 07 2020 *) %o A215066 (PARI) {a(n)=n!*polcoeff(sum(m=0, n+1, prod(k=1, m, exp((2*k-1)*x+x*O(x^n))-1)), n)} %o A215066 for(n=0, 26, print1(a(n), ", ")) %o A215066 (Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (&+[(&*[Exp((2*k-1)*x) -1: k in [1..j]]): j in [1..m+1]]) )); [1] cat [Factorial(n)*b[n]: n in [1..m-1]]; // _G. C. Greubel_, Feb 07 2020 %o A215066 (Sage) %o A215066 m=20; %o A215066 def A215066_list(prec): %o A215066 P.<x> = PowerSeriesRing(QQ, prec) %o A215066 return P( sum(product(exp((2*k-1)*x)-1 for k in (1..j)) for j in (0..m)) ).list() %o A215066 a=A215066_list(m+1); [factorial(n)*a[n] for n in (0..m)] # _G. C. Greubel_, Feb 07 2020 %Y A215066 Cf. A053250, A158690, A207569, A214687. %K A215066 nonn,easy %O A215066 0,3 %A A215066 _Paul D. Hanna_, Aug 01 2012