This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215068 #16 Aug 02 2020 21:24:26 %S A215068 1,2,3,4,6,7,8,12,16,24,31,48,127,8191,131071,524287,2147483647, %T A215068 2305843009213693951,618970019642690137449562111, %U A215068 162259276829213363391578010288127,170141183460469231731687303715884105727 %N A215068 Numbers n such that for all divisors d of n, d+1 is either a prime or a perfect power. %C A215068 Apparently the divisors of 48 (A018261) together with the Mersenne primes (A000668). %C A215068 Confirmed by _Robert Israel_, Aug 02 2020: see link. %C A215068 Next term > 2*10^8. %H A215068 Robert Israel, <a href="/A215068/a215068.pdf">Proof of conjecture in A215068</a> %p A215068 sort([op(numtheory:-divisors(48)), seq(numtheory:-mersenne([i]),i=2..12)]); # _Robert Israel_, Aug 02 2020 %o A215068 (PARI) %o A215068 isA215068(n)= %o A215068 { %o A215068 my(x); %o A215068 fordiv (n, d, %o A215068 d1 = d + 1; %o A215068 if ( isprime(d1) || ispower(d1), next() ); %o A215068 return(0); %o A215068 ); %o A215068 return(1); %o A215068 } %o A215068 for (n=1,10^9, if(isA215068(n), print1(n,", "))); %Y A215068 Cf. A018261 (divisors of 48), A000668 (Mersenne primes), A001597 (perfect powers). %K A215068 nonn,hard %O A215068 1,2 %A A215068 _Joerg Arndt_, Aug 02 2012