This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215078 #15 Jan 27 2023 06:42:27 %S A215078 0,0,1,0,2,5,0,3,27,36,0,4,102,392,354,0,5,330,2760,6500,4425,0,6,975, %T A215078 15880,73350,123090,67171,0,7,2709,81060,654500,2033325,2637327, %U A215078 1200304,0,8,7196,381808,5064780,25926824,59992660,63259168,24684612,0,9,18468,1696464,35574840,281668590,1034305524,1896003648,1681960464,574304985,0,10,46125,7208880,232816500,2740317300,14981494710,42457884000,64240088580,49143419250,14914341925 %N A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows. %C A215078 If one starts the sum at j=0, the initial term T(0,0) is 1. %H A215078 Vincenzo Librandi, <a href="/A215078/b215078.txt">Table of n, a(n) for n = 0..1000</a> %F A215078 T(n,k) = binomial(n,k)*sum(j^n, j=1..k) %e A215078 0 %e A215078 0 1 %e A215078 0 2 5 %e A215078 0 3 27 36 %e A215078 0 4 102 392 354 %e A215078 0 5 330 2760 6500 4425 %e A215078 0 6 975 15880 73350 123090 67171 %e A215078 0 7 2709 81060 654500 2033325 2637327 1200304 %p A215078 A215078 := proc(n,k) %p A215078 binomial(n,k)*add(j^n,j=1..k) ; %p A215078 end proc: %p A215078 seq(seq(A215078(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Jan 27 2023 %t A215078 Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1] %Y A215078 Binomial convolution of A215083. %Y A215078 Cf. A215077 (row sums), A031971 (diagonal) %K A215078 nonn,tabl %O A215078 0,5 %A A215078 _Olivier Gérard_, Aug 02 2012