This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215079 #13 Jun 02 2025 08:06:12 %S A215079 1,0,1,0,3,4,0,7,32,27,0,15,176,405,256,0,31,832,3888,6144,3125,0,63, %T A215079 3648,30618,90112,109375,46656,0,127,15360,216513,1048576,2265625, %U A215079 2239488,823543,0,255,63232,1436859,10682368,36328125,62145792,51883209,16777216,0,511,257024,9172278,100139008,500000000,1310100480,1856265922,1342177280,387420489,0,1023,1037312,57159432,889192448,6230468750,23339943936,49715643824,60129542144,38354628411,10000000000 %N A215079 Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k). %C A215079 Initial term T(0,0) may be computed as 0, depending on formula and convention. %H A215079 Vincenzo Librandi, <a href="/A215079/b215079.txt">Table of n, a(n) for n = 0..1000</a> %F A215079 T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1). %F A215079 T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1) %F A215079 T(n,1) = A000225(n). - _R. J. Mathar_, Feb 08 2021 %e A215079 1 %e A215079 0 1 %e A215079 0 3 4 %e A215079 0 7 32 27 %e A215079 0 15 176 405 256 %e A215079 0 31 832 3888 6144 3125 %e A215079 0 63 3648 30618 90112 109375 46656 %e A215079 0 127 15360 216513 1048576 2265625 2239488 823543 %p A215079 A215079 := proc(n,k) %p A215079 k^n*add( binomial(n,n-k-j),j=0..n-k) ; %p A215079 end proc: # _R. J. Mathar_, Feb 08 2021 %t A215079 Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}], {k, 0, n}], {n, 0, 10}], 1] %Y A215079 Row sums sequence is A215077. %Y A215079 Product of A055248 and A089072 (with an initial 0 in each row). %Y A215079 Cf. A000225 (column k=1), A000312 (diagonal). %K A215079 nonn,tabl %O A215079 0,5 %A A215079 _Olivier Gérard_, Aug 02 2012