cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215080 T(n,k) = Sum_{j=0..k} (k-j)^n * binomial(n,j).

This page as a plain text file.
%I A215080 #15 Nov 03 2023 15:21:48
%S A215080 1,0,1,0,1,6,0,1,11,54,0,1,20,151,680,0,1,37,413,2569,11000,0,1,70,
%T A215080 1128,9450,52431,217392,0,1,135,3104,34416,243255,1251921,5076400,0,1,
%U A215080 264,8637,125248,1113027,7025016,34282879,136761984,0,1,521,24327,457807,5064143,38811015,225930121,1059812993,4175432064,0,1,1034,69334,1685266,23031680,212609518,1465077802,8026643702,36519075583,142469423360
%N A215080 T(n,k) = Sum_{j=0..k} (k-j)^n * binomial(n,j).
%H A215080 Alois P. Heinz, <a href="/A215080/b215080.txt">Rows n = 0..140, flattened</a>
%F A215080 T(n,k) = sum( (k-j)^n * binomial(n,j), j=0..k).
%e A215080 Triangle T(n,k) begins:
%e A215080   1;
%e A215080   0, 1;
%e A215080   0, 1,   6;
%e A215080   0, 1,  11,   54;
%e A215080   0, 1,  20,  151,    680;
%e A215080   0, 1,  37,  413,   2569,   11000;
%e A215080   0, 1,  70, 1128,   9450,   52431,  217392;
%e A215080   0, 1, 135, 3104,  34416,  243255, 1251921,  5076400;
%e A215080   0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984;
%e A215080   ...
%t A215080 Flatten[Table[Table[Sum[(k - j)^n*Binomial[n, j], {j, 0, k}], {k, 0, n}], {n, 0, 10}], 1]
%Y A215080 Row sums give 215077 (binomial convolution of descending powers).
%Y A215080 Main diagonal gives A072034.
%K A215080 nonn,tabl
%O A215080 0,6
%A A215080 _Olivier Gérard_, Aug 02 2012