This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215082 #17 Feb 22 2013 14:40:39 %S A215082 0,1,1,3,4,5,8,12,17,23,35,43,66,81,124,148,229,266,414,476,742,842, %T A215082 1318,1478,2320,2581,4059,4481,7062,7743,12224,13328,21071,22857, %U A215082 36185,39073,61930,66605,105678,113242,179847,192084,305326,325128,517212,549252 %N A215082 Related to Fibonacci numbers, see the Formula section. %H A215082 Alois P. Heinz, <a href="/A215082/b215082.txt">Table of n, a(n) for n = 0..1000</a> %F A215082 a(0) = 0, a(1) = 1, a(2) = 1, a(2n) + a(2n+1) = (n+1)*Fibonacci(n+2), a(2n) = a(2n-1) + a(2n-3). %F A215082 G.f.: x*(2*x^2+1)*(x^3+x+1) / ((x^2-x+1)*(x^2+x+1)*(x^4+x^2-1)^2). - _Alois P. Heinz_, Aug 02 2012 %e A215082 a(2) + a(3) = 2*2 = 4 -> a(3) = 3. %e A215082 a(4) = a(3) + a(1) = 3 + 1 = 4. %e A215082 a(4) + a(5) = 3*3 = 9 -> a(5) = 5. %e A215082 a(6) = a(5) + a(3) = 5 + 3 = 8 , etc. %p A215082 a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50); # _Alois P. Heinz_, Aug 02 2012 %Y A215082 Cf. A000045, A023607. %K A215082 nonn,easy %O A215082 0,4 %A A215082 _Philippe Deléham_, Aug 02 2012