A215085 a(n) = (A214089(n)^2 - 1) divided by four times the product of the first n primes.
1, 1, 1, 1, 19, 17, 1, 2567, 3350, 128928, 3706896, 1290179, 100170428, 39080794, 61998759572, 7833495265, 45119290746, 581075656330, 8672770990, 15792702394898740, 594681417768520250, 25509154378676494, 1642780344643617537867, 480931910076867717575
Offset: 1
Keywords
Examples
A214089(14) = 1430083494841, n#_14 = 13082761331670030, and (1430083494841^2 - 1) / (4 * 13082761331670030) = 39080794, so a(14) = 39080794.
Links
- J. Stauduhar, Table of n, a(n) for n = 1..30
Programs
-
Maple
A215085 := proc(n) (A214089(n)^2-1)/4/A002110(n) ; end proc: # R. J. Mathar, Aug 21 2012
-
Python
from itertools import product from sympy import sieve, prime, isprime, primorial from sympy.ntheory.modular import crt def A215085(n): return ( 1 if n == 1 else ( int( min( filter( isprime, ( crt(tuple(sieve.primerange(prime(n) + 1)), t)[0] for t in product((1, -1), repeat=n) ), ) ) ) ** 2 - 1 ) // 4 // primorial(n) ) # Chai Wah Wu, May 31 2022 for n in range(1, 16): print(A215085(n), end=", ")
Comments