cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215085 a(n) = (A214089(n)^2 - 1) divided by four times the product of the first n primes.

Original entry on oeis.org

1, 1, 1, 1, 19, 17, 1, 2567, 3350, 128928, 3706896, 1290179, 100170428, 39080794, 61998759572, 7833495265, 45119290746, 581075656330, 8672770990, 15792702394898740, 594681417768520250, 25509154378676494, 1642780344643617537867, 480931910076867717575
Offset: 1

Views

Author

J. Stauduhar, Aug 02 2012

Keywords

Comments

When floor(A214089(n) / 2) = A118478(n), a(n) = A215021(n).

Examples

			A214089(14) = 1430083494841, n#_14 = 13082761331670030, and (1430083494841^2 - 1) / (4 * 13082761331670030) = 39080794, so a(14) = 39080794.
		

Programs

  • Maple
    A215085 := proc(n)
            (A214089(n)^2-1)/4/A002110(n) ;
    end proc: # R. J. Mathar, Aug 21 2012
  • Python
    from itertools import product
    from sympy import sieve, prime, isprime, primorial
    from sympy.ntheory.modular import crt
    def A215085(n):
        return (
            1
            if n == 1
            else (
                int(
                    min(
                        filter(
                            isprime,
                            (
                                crt(tuple(sieve.primerange(prime(n) + 1)), t)[0]
                                for t in product((1, -1), repeat=n)
                            ),
                        )
                    )
                )
                ** 2
                - 1
            )
            // 4
            // primorial(n)
        )  # Chai Wah Wu, May 31 2022
    for n in range(1, 16):
        print(A215085(n), end=", ")

Formula

a(n) = (A214089(n)^2 - 1) / (4 * A002110(n)).