This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215094 #6 Jan 10 2014 17:03:43 %S A215094 1,1,4,25,211,2296,30619,482455,8768596,180603511,4157281129, %T A215094 105764735440,2946911156281,89247262497121,2919028298593684, %U A215094 102543779766289705,3850690682004992491,153927330069247143976,6525942204725963508259,292483420180063453725175 %N A215094 E.g.f. satisfies A(x) = sinh(x + A(x)^2/2). %F A215094 E.g.f.: A(x) = sinh(G(x)) where G(x) = Series_Reversion(x - sinh(x)^2) is the e.g.f. of A215093. %F A215094 a(n) ~ 2^(2*n-3/2) * sqrt(1+1/sqrt(5)) * n^(n-1) / (exp(n) * (1-sqrt(5) + 4*arcsinh(sqrt((sqrt(5)-1)/2)))^(n-1/2)). - _Vaclav Kotesovec_, Jan 10 2014 %e A215094 E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 211*x^5/5! + 2296*x^6/6! +... %e A215094 A(x) = sinh(G(x)) where G(x) is the e.g.f. of A215093: %e A215094 G(x) = x + x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! +... %e A215094 where %e A215094 A(x)^2/2 = x^2/2! + 3*x^3/3! + 19*x^4/4! + 165*x^5/5! +... %t A215094 Rest[CoefficientList[InverseSeries[Series[-x^2/2 + ArcSinh[x],{x,0,20}],x],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Jan 10 2014 *) %o A215094 (PARI) {a(n)=n!*polcoeff(sinh(serreverse(x-sinh(x+x*O(x^n))^2/2)), n)} %o A215094 (PARI) {a(n)=local(A=x); for(i=0, n, A=x + sinh(A)^2/2); n!*polcoeff(sinh(A), n)} %o A215094 for(n=1, 25, print1(a(n), ", ")) %Y A215094 Cf. A215093, A143137. %K A215094 nonn %O A215094 1,3 %A A215094 _Paul D. Hanna_, Aug 02 2012