This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215095 #18 Oct 01 2024 15:44:55 %S A215095 0,1,3,4,8,17,35,68,136,273,547,1092,2184,4369,8739,17476,34952,69905, %T A215095 139811,279620,559240,1118481,2236963,4473924,8947848,17895697, %U A215095 35791395,71582788,143165576,286331153,572662307,1145324612,2290649224,4581298449,9162596899 %N A215095 a(0)=0, a(1)=1, a(n) = least k>a(n-1) such that k+a(n-2) is a Jacobsthal number. %C A215095 Same definition, but k+a(n-2) is a %C A215095 Fibonacci number: A006498 except first two terms, %C A215095 Lucas number: A000045 except first two terms, %C A215095 Pell number: A089928(n-1), %C A215095 factorial: A215096, %C A215095 square: A194274, %C A215095 cube: A215097, %C A215095 triangular number: A011848(n+2), %C A215095 oblong number: A215098, %C A215095 prime number: A215099. %C A215095 Example of a related sequence definition: a(0)=0, a(1)=1, a(n) = least k>a(n-1) such that k+a(n-2) is a cube. %F A215095 Conjecture: G.f. (x+2*x^2)/(1-x-x^2-x^3-2*x^4). - _David Scambler_, Aug 06 2012 %o A215095 (Python) %o A215095 prpr = 0 %o A215095 prev = 1 %o A215095 jac = [0]*10000 %o A215095 for n in range(10000): %o A215095 jac[n] = prpr %o A215095 curr = prpr*2 + prev %o A215095 prpr = prev %o A215095 prev = curr %o A215095 prpr, prev = 0, 1 %o A215095 for n in range(1, 44): %o A215095 print(prpr, end=', ') %o A215095 b = c = 0 %o A215095 while c<=prev: %o A215095 c = jac[b] - prpr %o A215095 b+=1 %o A215095 prpr = prev %o A215095 prev = c %Y A215095 Cf. A001045, A006498, A089928, A000045. %K A215095 nonn %O A215095 0,3 %A A215095 _Alex Ratushnyak_, Aug 03 2012