cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215116 G.f. satisfies: A(x) = x + 3*x^2 + x*A(A(A(A(x)))).

This page as a plain text file.
%I A215116 #8 Aug 03 2012 14:53:58
%S A215116 1,4,16,256,4864,111616,2983936,89743360,2970861568,106768629760,
%T A215116 4125849419776,170207219286016,7454572671926272,345078981839552512,
%U A215116 16822127738969128960,860944587541763325952,46137178395559050870784,2582843669636660403896320,150735442996358913332346880
%N A215116 G.f. satisfies: A(x) = x + 3*x^2 + x*A(A(A(A(x)))).
%C A215116 The (1/4)-iteration of the g.f. equals an integer series (A215117).
%e A215116 G.f.: A(x) = x + 4*x^2 + 16*x^3 + 256*x^4 + 4864*x^5 + 111616*x^6 + 2983936*x^7 +...
%e A215116 where
%e A215116 A(A(A(A(x)))) = x + 16*x^2 + 256*x^3 + 4864*x^4 + 111616*x^5 + 2983936*x^6 +...
%e A215116 Related expansions.
%e A215116 Let D(D(D(D(x)))) = A(x), then D(x) is an integer series where:
%e A215116 D(x) = x + x^2 + x^3 + 49*x^4 + 721*x^5 + 17281*x^6 + 452065*x^7 +...
%e A215116 where the coefficients of D(x) are congruent to 1 modulo 48.
%o A215116 (PARI) {a(n)=local(A=x+4*x^2); for(i=1,n,A=x+3*x^2+x*subst(A,x,subst(A,x,subst(A,x,A+x*O(x^n))))); polcoeff(A, n)}
%o A215116 for(n=1, 31, print1(a(n), ", "))
%Y A215116 Cf. A215117, A213010, A215114, A215116, A215118.
%K A215116 nonn
%O A215116 1,2
%A A215116 _Paul D. Hanna_, Aug 03 2012