This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215119 #10 Sep 26 2013 03:24:32 %S A215119 1,1,1,101,2301,82601,3287001,149411501,7474902101,406765054801, %T A215119 23836604715601,1493376284080501,99459838574595501, %U A215119 7009748111184956601,520845172037612209801,40672220108202107951101,3328819620490715884626501,284871268231239093741932001 %N A215119 G.f. A(x) satisfies: A(A(A(A(A(x))))) = G(x) where G(x) = x + 4*x^2 + x*G(G(G(G(G(x))))) is the g.f. of A215118. %C A215119 a(n) == 1 (mod 100). %e A215119 G.f.: A(x) = x + x^2 + x^3 + 101*x^4 + 2301*x^5 + 82601*x^6 + 3287001*x^7 +... %e A215119 Let G(x) = A(A(A(A(A(x))))): %e A215119 G(x) = x + 5*x^2 + 25*x^3 + 625*x^4 + 18125*x^5 + 628125*x^6 + 25390625*x^7 +... %e A215119 such that G(x) = x + 4*x^2 + x*G(G(G(G(G(x))))): %e A215119 G(G(G(G(G(x))))) = x + 25*x^2 + 625*x^3 + 18125*x^4 + 628125*x^5 + 25390625*x^6 +... %o A215119 (PARI) {a(n)=local(A=x+x^2,B=x+4*x^2);for(i=1,n+1,B=x+4*x^2+x*subst(B,x,subst(B,x,subst(B,x,subst(B,x,B+x^2*O(x^n)))))); %o A215119 for(j=1, n+1, A=round((4*A+subst(B, x, serreverse(subst(A,x,subst(A,x,subst(A,x,A+x^2*O(x^n)))))))/5));; polcoeff(A, n)} %o A215119 for(n=1, 31, print1(a(n), ", ")) %Y A215119 Cf. A215118, A213009, A215115, A215117. %K A215119 nonn %O A215119 1,4 %A A215119 _Paul D. Hanna_, Aug 03 2012