cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215158 Primes p such that (2*p - 1)*(4*p + 1)*(14*p - 1) divides Fibonacci(p).

This page as a plain text file.
%I A215158 #13 Apr 03 2023 10:36:13
%S A215158 727,7507,58417,164767,192697,260317,362977,624847,800557,838837,
%T A215158 946417,2107447,2334187,2382607,2461717,2495947,2523517,2566027,
%U A215158 2923747,3169237,3373177,3373687,3763717,3771907,3838897,4143637,4635277,4741837,4979047,5097247
%N A215158 Primes p such that (2*p - 1)*(4*p + 1)*(14*p - 1) divides Fibonacci(p).
%H A215158 Chris Caldwell, The Prime Glossary, <a href="https://t5k.org/glossary/xpage/FibonacciNumber.html">Fibonacci number</a>
%H A215158 C. K. Caldwell, "Top Twenty" page, <a href="https://t5k.org/top20/page.php?id=64">Fibonacci cofactor</a>
%t A215158 Select[Prime@Range[10^3], Mod[Fibonacci[#], 112*#^3 - 36*#^2 - 12*# + 1] == 0 &]
%o A215158 (PARI) a=-1; b=1; for(n=0, 2548623, a=a+b; b=b+a; p=2*n+1; if(isprime(p)&&Mod(b, 112*p^3-36*p^2-12*p+1)==0, print1(p, ", "))); \\ _Arkadiusz Wesolowski_, Nov 16 2013
%Y A215158 Subsequence of A159231.
%Y A215158 Cf. A000045, A159259.
%K A215158 less,nonn
%O A215158 1,1
%A A215158 _Arkadiusz Wesolowski_, Aug 04 2012