cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215190 T(n,k)=Number of arrays of n 0..k integers with no sum of consecutive elements equal to a disjoint adjacent sum of an equal number of elements.

Original entry on oeis.org

2, 3, 2, 4, 6, 2, 5, 12, 12, 0, 6, 20, 36, 18, 0, 7, 30, 80, 88, 30, 0, 8, 42, 150, 276, 216, 30, 0, 9, 56, 252, 664, 954, 440, 18, 0, 10, 72, 392, 1366, 2940, 2898, 896, 0, 0, 11, 90, 576, 2512, 7404, 11756, 8808, 1626, 0, 0, 12, 110, 810, 4264, 16092, 36864, 46972, 24014
Offset: 1

Views

Author

R. H. Hardin Aug 05 2012

Keywords

Comments

Table starts
.2..3....4......5.......6........7.........8..........9.........10........11
.2..6...12.....20......30.......42........56.........72.........90.......110
.2.12...36.....80.....150......252.......392........576........810......1100
.0.18...88....276.....664.....1366......2512.......4264.......6800.....10330
.0.30..216....954....2940.....7404.....16092......31560......57072.....96990
.0.30..440...2898...11756....36864.....95832.....219092.....452368....864810
.0.18..896...8808...46972...183438....570460....1520506....3584736...7709744
.0..0.1626..24014..172046...848802...3191034....9990182...27052236..65759590
.0..0.2980..65462..630456..3931086..17862744...65678336..204247760.561117076
.0..0.4692.160670.2139436.17086156..94691966..411561564.1477403080
.0..0.7214.394750.7274062.74389138.502572562.2581475090
Column 1 is zero for n>=4
Column 2 is zero for n>=8
Column 3 is zero for n>=51

Examples

			Some solutions for n=6 k=4
..1....4....0....0....0....0....4....3....0....3....1....4....3....3....1....2
..3....3....3....3....4....4....2....4....3....0....3....2....0....4....0....3
..2....2....4....0....0....3....0....0....1....4....1....4....2....2....3....0
..0....1....3....4....2....2....4....2....4....3....2....3....4....0....4....4
..4....2....0....2....0....4....3....3....3....0....1....4....0....3....1....0
..3....0....1....3....4....2....4....4....1....2....4....1....3....2....4....3
		

Crossrefs

Row 2 is A002378
Row 3 is A011379