cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215192 Number of arrays of 5 0..n integers with no sum of consecutive elements equal to a disjoint adjacent sum of an equal number of elements.

Original entry on oeis.org

0, 30, 216, 954, 2940, 7404, 16092, 31560, 57072, 96990, 156588, 242502, 362496, 525972, 743652, 1028184, 1393740, 1856682, 2435112, 3149598, 4022640, 5079492, 6347544, 7857204, 9641232, 11735682, 14179152, 17013822, 20284620, 24040320
Offset: 1

Views

Author

R. H. Hardin, Aug 05 2012

Keywords

Comments

Row 5 of A215190.

Examples

			Some solutions for n=6:
..5....5....3....4....6....0....6....6....3....2....1....6....2....0....3....2
..6....3....2....1....4....4....1....5....1....6....5....1....1....1....2....6
..4....2....5....3....5....1....0....4....3....4....6....3....3....2....5....5
..1....1....2....0....0....5....2....1....2....3....4....2....2....0....1....2
..2....0....0....5....6....2....1....5....0....2....1....6....5....4....4....1
		

Crossrefs

Cf. A215190.

Formula

Empirical: a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4) + 2*a(n-5) + 2*a(n-6) - 4*a(n-7) - a(n-8) + 3*a(n-9) - a(n-10).
Empirical g.f.: 6*x^2*(5 + 21*x + 56*x^2 + 69*x^3 + 57*x^4 + 24*x^5 + 8*x^6) / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jul 22 2018