A215192 Number of arrays of 5 0..n integers with no sum of consecutive elements equal to a disjoint adjacent sum of an equal number of elements.
0, 30, 216, 954, 2940, 7404, 16092, 31560, 57072, 96990, 156588, 242502, 362496, 525972, 743652, 1028184, 1393740, 1856682, 2435112, 3149598, 4022640, 5079492, 6347544, 7857204, 9641232, 11735682, 14179152, 17013822, 20284620, 24040320
Offset: 1
Keywords
Examples
Some solutions for n=6: ..5....5....3....4....6....0....6....6....3....2....1....6....2....0....3....2 ..6....3....2....1....4....4....1....5....1....6....5....1....1....1....2....6 ..4....2....5....3....5....1....0....4....3....4....6....3....3....2....5....5 ..1....1....2....0....0....5....2....1....2....3....4....2....2....0....1....2 ..2....0....0....5....6....2....1....5....0....2....1....6....5....4....4....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A215190.
Formula
Empirical: a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 2*a(n-4) + 2*a(n-5) + 2*a(n-6) - 4*a(n-7) - a(n-8) + 3*a(n-9) - a(n-10).
Empirical g.f.: 6*x^2*(5 + 21*x + 56*x^2 + 69*x^3 + 57*x^4 + 24*x^5 + 8*x^6) / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)). - Colin Barker, Jul 22 2018
Comments