This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215199 #54 Aug 16 2025 21:15:30 %S A215199 14,44,135,2511,8991,29888,916352,12393728,155161088,2200933376, %T A215199 6856828928,689278976,481758175232,3684603215871,35419114668032, %U A215199 2035980763136,174123685117952,9399153082499072,19047348965998592,203368956137832447,24217192574746623,2503092614937444351 %N A215199 Smallest number k such that k and k+1 are both of the form p*q^n where p and q are distinct primes. %C A215199 a(15) <= 35419114668032. - _Donovan Johnson_, Aug 22 2012 %C A215199 If k is a term such that k = p*q^n and k+1 = r*s^n, where p,q,r,s are primes, then clearly q != s. Conjecture: q and s are either 2 or 3 for all terms. - _Chai Wah Wu_, Mar 10 2019 %C A215199 Since q^n and s^n are coprime, the Chinese Remainder Theorem can be used to find candidate terms to test, i.e., numbers k such that k+1 == 0 (mod s^n) and k+1 == 1 (mod q^n) (see Python code). - _Chai Wah Wu_, Mar 12 2019 %C A215199 From _David A. Corneth_, Mar 13 2019: (Start) %C A215199 Conjecture: Let 1 <= D < 2^n be the denominator of N/D of (3/2)^n. Without loss of generality, if the conjecture above holds that (q, s) = (2, 3) then r = D + k*2^n for some n. %C A215199 Example: for n = 100, we have the continued fraction of (3/2)^100 to be 406561177535215237, 2, 1, 1, 14, 9, 1, 1, 2, 2, 1, 4, 1, 2, 6, 5, 1, 195, 3, 26, 39, 6, 1, 1, 1, 2, 7, 1, 4, 2, 1, 11, 1, 25, 6, 1, 4, 3, 2, 112, 1, 2, 1, 3, 1, 3, 4, 8, 1, 1, 12, 2, 1, 3, 2, 2 from which we compute D = 519502503658624787456021964081. We find r = 1100840223501761745286594404230449 = D + 868 * 2^100 giving a(100) + 1 = r*3^100. (End) %H A215199 Chai Wah Wu, <a href="/A215199/b215199.txt">Table of n, a(n) for n = 1..1279</a> (terms 25..32 from David A. Corneth) %e A215199 a(3) = 135 because 135 = 5*3^3 and 136 = 17*2^3; %e A215199 a(4) = 2511 because 2511 = 31*3^4 and 2512 = 157*2^4. %p A215199 psig := proc(n) %p A215199 local s,p ; %p A215199 s := [] ; %p A215199 for p in ifactors(n)[2] do %p A215199 s := [op(s),op(2,p)] ; %p A215199 end do: %p A215199 sort(s) ; %p A215199 end proc: %p A215199 A215199 := proc(n) %p A215199 local slim,smi,sma,ca,qi,q,p,k ; %p A215199 for slim from 0 do %p A215199 smi := slim*1000 ; %p A215199 sma := (slim+1)*1000 ; %p A215199 ca := sma ; %p A215199 q := 2 ; %p A215199 for qi from 1 do %p A215199 p := nextprime(floor(smi/q^n)-1) ; %p A215199 while p*q^n < sma do %p A215199 if p <> q then %p A215199 k := p*q^n ; %p A215199 if psig(k+1) = [1,n] then %p A215199 ca := min(ca,k) ; %p A215199 end if; %p A215199 end if; %p A215199 p := nextprime(p) ; %p A215199 end do: %p A215199 if q^n >= sma then %p A215199 break; %p A215199 end if; %p A215199 q := nextprime(q) ; %p A215199 end do: %p A215199 if ca < sma then %p A215199 return ca ; %p A215199 end if; %p A215199 end do: %p A215199 end proc: %p A215199 for n from 1 do %p A215199 print(A215199(n)) ; %p A215199 end do; # _R. J. Mathar_, Aug 07 2012 %o A215199 (Python) %o A215199 from sympy import isprime, nextprime %o A215199 from sympy.ntheory.modular import crt %o A215199 def A215199(n): %o A215199 l = len(str(3**n))-1 %o A215199 l10, result = 10**l, 2*10**l %o A215199 while result >= 2*l10: %o A215199 l += 1 %o A215199 l102, result = l10, 20*l10 %o A215199 l10 *= 10 %o A215199 q, qn = 2, 2**n %o A215199 while qn <= l10: %o A215199 s, sn = 2, 2**n %o A215199 while sn <= l10: %o A215199 if s != q: %o A215199 a, b = crt([qn,sn],[0,1]) %o A215199 if a <= l102: %o A215199 a = b*(l102//b) + a %o A215199 while a < l10: %o A215199 p, t = a//qn, (a-1)//sn %o A215199 if p != q and t != s and isprime(p) and isprime(t): %o A215199 result = min(result,a-1) %o A215199 a += b %o A215199 s = nextprime(s) %o A215199 sn = s**n %o A215199 q = nextprime(q) %o A215199 qn = q**n %o A215199 return result # _Chai Wah Wu_, Mar 12 2019 %Y A215199 Cf. A074172, A215173, A215197, A215198. %K A215199 nonn %O A215199 1,1 %A A215199 _Michel Lagneau_, Aug 05 2012 %E A215199 a(10)-a(14) from _Donovan Johnson_, Aug 22 2012 %E A215199 a(15)-a(17) from _Chai Wah Wu_, Mar 09 2019 %E A215199 a(18)-a(22) from _Chai Wah Wu_, Mar 10 2019