cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215218 Number of sphenic numbers, i.e., numbers with exactly three distinct prime factors, up to 10^n.

Original entry on oeis.org

0, 5, 135, 1800, 19919, 206964, 2086746, 20710806, 203834084, 1997171674, 19522428788, 190614467420, 1860310801454, 18155356377267, 177224592578839, 1730651760050923, 16908343191198752, 165279853754232019, 1616504757072680964
Offset: 1

Views

Author

Martin Renner, Aug 06 2012

Keywords

Examples

			a(2) = 5 since there are the five sphenic numbers 30, 42, 66, 70, 78 up to 100.
		

Crossrefs

Cf. A007304.

Programs

  • Mathematica
    f[n_] := Sum[ PrimePi[n/(Prime@ i*Prime@ j)] - j, {i, PrimePi[n^(1/3)]}, {j, i +1, PrimePi@ Sqrt[n/Prime@ i]}]; (* Robert G. Wilson v, Dec 28 2016 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A215218(n): return int(sum(primepi(10**n//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(10**n,3)[0]+1),1) for b,m in enumerate(primerange(k+1,isqrt(10**n//k)+1),a+1))) # Chai Wah Wu, Aug 26 2024

Extensions

a(8)-a(19) from Henri Lifchitz, Nov 11 2012