cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215228 T(n,k) = number of length-n 0..k arrays connected end-around, with no sequence of L

Original entry on oeis.org

2, 3, 2, 4, 6, 0, 5, 12, 6, 0, 6, 20, 24, 12, 0, 7, 30, 60, 72, 0, 0, 8, 42, 120, 240, 120, 18, 0, 9, 56, 210, 600, 720, 408, 0, 0, 10, 72, 336, 1260, 2520, 2940, 840, 24, 0, 11, 90, 504, 2352, 6720, 12600, 10080, 2448, 0, 0, 12, 110, 720, 4032, 15120, 40110, 57960, 38640
Offset: 1

Views

Author

R. H. Hardin, Aug 06 2012

Keywords

Comments

Table starts
2 3 4 5 6 7 8 9 10
2 6 12 20 30 42 56 72 90
0 6 24 60 120 210 336 504 720
0 12 72 240 600 1260 2352 4032 6480
0 0 120 720 2520 6720 15120 30240 55440
0 18 408 2940 12600 40110 105168 240408 496080
0 0 840 10080 57960 228480 710640 1874880 4379760
0 24 2448 38640 280560 1338120 4883424 14783328 38962080
0 0 5760 140400 1330560 7761600 33384960 116212320 345945600
0 0 15960 529440 6394680 45291120 228945360 915183360 3075040080
0 66 39864 1956900 30548760 263674950 1568401296 7203324744
0 72 108024 7335840 146516040 1537291560 10751253072
Empirical: row n is a polynomial of degree n.
Coefficients for rows 1-10, highest power first:
1 1
1 1 0
1 0 -1 0
1 0 -1 0 0
1 0 -5 0 4 0
1 0 -6 5 5 -5 0
1 0 -7 0 14 0 -8 0
1 0 -8 0 27 -12 -20 12 0
1 0 -9 0 27 0 -31 0 12 0
1 0 -10 0 35 9 -60 -25 34 16 0
Row n is divisible by n.
Column k is divisible by k+1.
From Robert Israel, Nov 23 2017: (Start)
Row n is a monic polynomial of degree n.
Proof: Let b(j,n,k) be the number of such arrays taking exactly j different values.
Then T(n,k) = Sum_{j <= n} b(j,n,k). But since the j values may be any combination of 0..k taken j at a time, b(j,n,k) = binomial(k+1,j)* b(j,n,j-1) which (if nonzero) is a polynomial in k of degree j.
In particular, b(n,n,n-1) = n!, so b(n,n,k) has degree n and leading coefficient 1. (End)

Examples

			Some solutions for n=5, k=4:
  3  0  1  1  1  0  4  4  0  1  3  2  2  3  1  0
  2  4  0  3  0  4  3  2  2  2  4  0  4  4  4  1
  0  2  2  2  2  3  0  3  1  4  0  4  3  1  0  0
  3  0  3  0  3  1  3  4  4  0  3  0  0  3  4  2
  1  3  2  4  0  2  1  0  1  4  2  1  4  0  2  3
		

Crossrefs

Column 2 is A066297.
Row 2 is A002378.
Row 3 is A007531(n+1).
Row 4 is A047928(n+1).
Row 5 is A052787(n+2).