cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215245 a(n) = minimal value of A215244(k) for 2^n <= k < 2^(n+1).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 20, 29, 42, 65, 95, 136, 212, 308, 444, 687, 1005, 1439, 2242, 3257, 4696, 7266, 10629, 15219
Offset: 0

Views

Author

N. J. A. Sloane, Aug 07 2012

Keywords

Comments

The initial terms roughly satisfy a(n) approx.= a(n-1)+a(n-3), which leads to the guess that perhaps a(n) ~ 1.4655^n, from the real zero of x^3-x-1. - N. J. A. Sloane, Aug 08 2012

Examples

			The values of A215244(k) for k=8 through 15 are (4, 3, 3, 3, 4, 3, 4, 8), with minimal value a(3) = 3.
		

Crossrefs

Cf. A215244, A215246, A215253, A215254. A215255 gives an upper bound.

Programs

  • Maple
    A215245 := proc(n)
        local a,k ;
        a := A215244(2^n) ;
        for k from 2^n+1 to 2^(n+1)-1 do
            a := min(a,A215244(k)) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 07 2012
  • Mathematica
    palQ[L_] := SameQ[L, Reverse[L]];
    b[L_] := b[L] = Module[{a = palQ[L] // Boole, c}, For[c = 1, c < Length[L], c++, If[palQ[L[[;; c]]], a = a + b[L[[c+1 ;;]]]]]; a];
    a215244[n_] := If[n == 1, 1, b[IntegerDigits[n, 2]]];
    a215245[n_] := Module[{a, k}, a = a215244[2^n]; For[k = 2^n+1, k <= 2^(n+1) - 1, k++, a = Min[a, a215244[k]]]; a];
    a215245 /@ Range[0, 20] (* Jean-François Alcover, Oct 28 2019 *)

Extensions

a(10)-a(13) from R. J. Mathar, Aug 07 2012
a(14)-a(17) from N. J. A. Sloane, Aug 08 2012, using Mathar's Maple code.
a(18)-a(25) from Giovanni Resta, Mar 19 2013