A215245 a(n) = minimal value of A215244(k) for 2^n <= k < 2^(n+1).
1, 1, 2, 3, 4, 6, 9, 13, 20, 29, 42, 65, 95, 136, 212, 308, 444, 687, 1005, 1439, 2242, 3257, 4696, 7266, 10629, 15219
Offset: 0
Examples
The values of A215244(k) for k=8 through 15 are (4, 3, 3, 3, 4, 3, 4, 8), with minimal value a(3) = 3.
Links
- Giovanni Resta, Examples of words attaining the minimal value for n = 0..25
Programs
-
Maple
A215245 := proc(n) local a,k ; a := A215244(2^n) ; for k from 2^n+1 to 2^(n+1)-1 do a := min(a,A215244(k)) ; end do: a ; end proc: # R. J. Mathar, Aug 07 2012
-
Mathematica
palQ[L_] := SameQ[L, Reverse[L]]; b[L_] := b[L] = Module[{a = palQ[L] // Boole, c}, For[c = 1, c < Length[L], c++, If[palQ[L[[;; c]]], a = a + b[L[[c+1 ;;]]]]]; a]; a215244[n_] := If[n == 1, 1, b[IntegerDigits[n, 2]]]; a215245[n_] := Module[{a, k}, a = a215244[2^n]; For[k = 2^n+1, k <= 2^(n+1) - 1, k++, a = Min[a, a215244[k]]]; a]; a215245 /@ Range[0, 20] (* Jean-François Alcover, Oct 28 2019 *)
Extensions
a(10)-a(13) from R. J. Mathar, Aug 07 2012
a(14)-a(17) from N. J. A. Sloane, Aug 08 2012, using Mathar's Maple code.
a(18)-a(25) from Giovanni Resta, Mar 19 2013
Comments