A215254 Consider numbers m in the range 2^n <= m < 2^(n+1); the smallest A215244(m) in this range is k=A215245(n); a(n) = binary representation of m for the first time this k appears.
1, 10, 100, 1001, 10010, 100101, 1001101, 10010110, 101001101, 1001011001, 10010110010, 100101100101, 1001101001101, 10010110010110, 101001101001101, 1001011001011001, 10010110010110010, 100101100101100101
Offset: 0
Examples
If the numbers are written under each other, there is a suggestion of a pattern (see A215255 for the most obvious pattern). It would be interesting to have more terms to see if the pattern continues. 0 1 1 1 10 10 2 100 100 3 1001 1001 4 10010 10010 5 100101 a 6 1001101 b1 7 10010110 a10 8 101001101 10b1 9 1001011001 a1001 10 10010110010 a10010 11 100101100101 aa 12 1001101001101 bb1 13 10010110010110 aa10 14 101001101001101 10bb1 15 1001011001011001 aa1001 16 10010110010110010 aa10010 17 100101100101100101 aaa 18 1001101001101001101 bbb1 19 10010110010110010110 aaa10 20 101001101001101001101 10bbb1 21 1001011001011001011001 aaa1001 22 10010110010110010110010 aaa10010 23 100101100101100101100101 aaaa 24 1001101001101001101001101 bbbb1 25 10010110010110010110010110 aaaa10 26 101001101001101001101001101 10bbbb1 The rightmost column is obtained by substituting a=100101 and b=100110. A period of 6 is apparent. - _Lars Blomberg_, May 18 2019
Links
- Lars Blomberg, Table of n, a(n) for n = 0..26
Extensions
Example augmented by Lars Blomberg, May 18 2019
Comments