A215255 Let S be the binary string consisting of the first n digits of (100101)*; a(n) = number of ways of writing S as a product of palindromes.
1, 1, 2, 3, 4, 6, 10, 13, 23, 29, 42, 65, 107, 136, 243, 308, 444, 687, 1131, 1439, 2570, 3257, 4696, 7266, 11962, 15219, 27181, 34447, 49666, 76847, 126513, 160960, 287473, 364320, 525280, 812753, 1338033, 1702353, 3040386, 3853139
Offset: 0
Formula
Recurrence: For n >= 4, a(n) = a(n-1)+a(n-d), where d = [3,2,4,2,4,3] according as n == [0,1,2,3,4,5] mod 6; initial conditions a(0)=a(1)=a(2)=1, a(3)=2.
G.f.: (x^17+x^14+x^12+5*x^11+2*x^10-x^9+3*x^8+3*x^7+6*x^5+4*x^4+3*x^3+2*x^2+x+1)/(1-10*x^6-6*x^12-x^18).
a(n) ~ C * D^n, where D = 1.4815692... and C depends on n mod 6 (approximate values of C are [0.580722..., 0.6452899..., 0.554135..., 0.667994..., 0.571395..., 0.556061...], respectively).
Comments