This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215270 #29 Jan 05 2025 19:51:39 %S A215270 1,6,6,36,216,7776,1679616,13060694016,21936950640377856, %T A215270 286511799958070431838109696, %U A215270 6285195213566005335561053533150026217291776,1800782593726645086383198950649858141454002621435149880441896326660096 %N A215270 a(n) = a(n-1)*a(n-2) with a(0)=1, a(1)=6. %C A215270 From _Peter Bala_, Nov 01 2013: (Start) %C A215270 Let phi = 1/2*(1 + sqrt(5)) denote the golden ratio A001622. This sequence is the simple continued fraction expansion of the constant c := 5*sum {n = 1..inf} 1/6^floor(n*phi) (= 25*sum {n = 1..inf} floor(n/phi)/6^n) = 0.86045 01626 86090 61353 ... = 1/(1 + 1/(6 + 1/(6 + 1/(36 + 1/(216 + 1/(7776 + 1/(1679616 + ...))))))). The constant c is known to be transcendental (see Adams and Davison 1977). Cf. A014565. %C A215270 Furthermore, for k = 0,1,2,... if we define the real number X(k) = sum {n >= 1} 1/6^(n*Fibonacci(k) + Fibonacci(k+1)*floor(n*phi)) then the real number X(k+1)/X(k) has the simple continued fraction expansion [0; a(k+1), a(k+2), a(k+3), ...] (apply Bowman 1988, Corollary 1). (End) %H A215270 Bruno Berselli, <a href="/A215270/b215270.txt">Table of n, a(n) for n = 0..15</a> %H A215270 W. W. Adams and J. L. Davison, <a href="http://www.jstor.org/stable/2041889">A remarkable class of continued fractions</a>, Proc. Amer. Math. Soc. 65 (1977), 194-198. %H A215270 P. G. Anderson, T. C. Brown, P. J.-S. Shiue, <a href="http://people.math.sfu.ca/~vjungic/tbrown/tom-28.pdf">A simple proof of a remarkable continued fraction identity</a>, Proc. Amer. Math. Soc. 123 (1995), 2005-2009. %H A215270 D. Bowman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/26-1.html">A new generalization of Davison's theorem</a>, Fib. Quart. Volume 26 (1988), 40-45 %F A215270 a(n) = 6^Fibonacci(n). %p A215270 a:= n-> 6^(<<1|1>, <1|0>>^n)[1, 2]: %p A215270 seq(a(n), n=0..12); # _Alois P. Heinz_, Jun 17 2014 %t A215270 RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == a[n - 1] a[n - 2]}, a[n], {n, 0, 15}] %o A215270 (Magma) [6^Fibonacci(n): n in [0..11]]; %Y A215270 Cf. A000045, A000301, A010098-A010100, A214706, A214887, A215271, A215272. %Y A215270 Cf. A166470 (same recurrence with initial values 2, 6). A014565. %Y A215270 Column k=6 of A244003. %K A215270 nonn,easy %O A215270 0,2 %A A215270 _Bruno Berselli_, Aug 07 2012