A215284 Numbers m such that Sum_{k=1..m} (m - k | k) = 0, where (i|j) is the Kronecker symbol.
5, 8, 12, 18, 20, 21, 24, 28, 32, 40, 44, 48, 52, 53, 56, 60, 68, 69, 72, 76, 77, 80, 84, 88, 92, 96, 99, 104, 108, 112, 116, 120, 124, 125, 126, 128, 132, 136, 140, 141, 148, 150, 152, 156, 160, 162, 164, 165, 168, 172, 176, 180, 184, 188, 189, 192, 197
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2830 from Robert Israel)
Programs
-
Maple
f:= n -> add(numtheory:-jacobi(n-k,k),k=1..n): select(n -> f(n)=0, [$1..300]); # Robert Israel, Mar 11 2018
-
Mathematica
Select[ Range[200], Sum[ KroneckerSymbol[# - k, k], {k, 1, #}] == 0 & ] (* Jean-François Alcover, Jul 29 2013 *)
-
PARI
is(m) = sum(k = 1, m, kronecker(m-k, k)) == 0; \\ Amiram Eldar, Nov 07 2024
-
Sage
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)] [n for n in (1..197) if sum(A215200_row(n)) == 0]
Comments