A215285 Numbers m such that Sum_{k=1..m} (m - k | k) = phi(m), where (i|j) is the Kronecker symbol and phi(m) is the Euler totient function.
1, 2, 3, 4, 6, 9, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
Reap[ Do[ If[ Sum[ KroneckerSymbol[n - k, k], {k, 1, n}] == EulerPhi[n], Print[n]; Sow[n]], {n, 1, 8000}]][[2, 1]] (* Jean-François Alcover, Jul 29 2013 *)
-
PARI
is(m) = sum(k = 1, m, kronecker(m-k, k)) == eulerphi(m); \\ Amiram Eldar, Nov 08 2024
-
Sage
def A215200_row(n): return [kronecker_symbol(n-k, k) for k in (1..n)] [n for n in (1..1000) if sum(A215200_row(n)) == euler_phi(n)]
Comments