cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215289 Number of permutations of 0..floor((n*5-1)/2) on even squares of an n X 5 array such that each row and column of even squares is increasing.

Original entry on oeis.org

1, 10, 140, 2100, 60060, 1051050, 42882840, 814773960, 41227562376, 824551247520, 48236247979920, 999179422441200, 64899082486180800, 1379105502831342000, 96951116849043342600, 2100607531729272423000, 157112712418611824074200, 3456479673209460129632400, 271742147399231010918736320
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Examples

			Some solutions for n=5:
..0..x..2..x..6....1..x..2..x..6....0..x..3..x..9....0..x..1..x..8
..x..3..x..4..x....x..0..x..4..x....x..2..x..4..x....x..3..x..6..x
..1..x..7..x.10....7..x..9..x.11....1..x..7..x.11....2..x..4..x..9
..x..5..x.11..x....x..3..x..5..x....x..5..x..8..x....x..7..x.10..x
..8..x..9..x.12....8..x.10..x.12....6..x.10..x.12....5..x.11..x.12
		

Crossrefs

Column 5 of A215292.

Formula

a(n) = A060854(3,f3)*A060854(2,f4)*binomial(3*f3+2*f4,3*f3), where f3 = floor((n+1)/2) and f4 = floor(n/2).