cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215294 Number of permutations of 0..floor((n*3-2)/2) on odd squares of an n X 3 array such that each row and column of odd squares is increasing.

This page as a plain text file.
%I A215294 #26 Feb 19 2025 02:43:07
%S A215294 1,3,6,30,70,420,1050,6930,18018,126126,336336,2450448,6651216,
%T A215294 49884120,137181330,1051723530,2921454250,22787343150,63804560820,
%U A215294 504636071940,1422156202740,11377249621920,32235540595440,260363981732400
%N A215294 Number of permutations of 0..floor((n*3-2)/2) on odd squares of an n X 3 array such that each row and column of odd squares is increasing.
%C A215294 a(n) is number of symmetric standard Young tableaux of shape (n,n,n). - _Ran Pan_, May 21 2015
%H A215294 R. H. Hardin, <a href="/A215294/b215294.txt">Table of n, a(n) for n = 1..210</a>
%H A215294 Ran Pan, <a href="http://www.math.ucsd.edu/~projectp/problems/p4.html">Problem 4</a>, Project P.
%F A215294 a(n) = A060854(1,f3)*A060854(2,f4)*binomial(1*f3+2*f4,1*f3) where f3 = floor((n+1)/2), f4 = floor(n/2).
%F A215294 a(n) = e(n) if n even otherwise o(n), where e(n) = 6*Gamma((3*n)/2)/((2 + n)*Gamma(1 + n/2)^2*Gamma(n/2)) and o(n) = (1 + n)*Gamma(1/2 + (3*n)/2)/(2*Gamma((3 + n)/2)^3). - _Peter Luschny_, Sep 30 2018
%e A215294 Some solutions for n=5:
%e A215294   x 1 x   x 0 x   x 0 x   x 4 x   x 0 x   x 1 x   x 1 x
%e A215294   0 x 5   2 x 4   2 x 5   0 x 2   1 x 2   0 x 5   0 x 3
%e A215294   x 3 x   x 1 x   x 1 x   x 5 x   x 3 x   x 2 x   x 2 x
%e A215294   2 x 6   3 x 6   3 x 6   1 x 3   4 x 6   3 x 6   4 x 5
%e A215294   x 4 x   x 5 x   x 4 x   x 6 x   x 5 x   x 4 x   x 6 x
%p A215294 a := n -> `if`(irem(n, 2) = 0, ((1/2)*n+1)*factorial((3/2)*n)/ (factorial((1/2)*n+1)^2*factorial((1/2)*n)), factorial((3/2)*n+3/2)/ (factorial((1/2)*n+1/2)^3*((9/2)*n+3/2))): # _Peter Luschny_, Sep 30 2018
%Y A215294 Column 3 of A215297.
%Y A215294 Cf. A060693.
%K A215294 nonn
%O A215294 1,2
%A A215294 _R. H. Hardin_, Aug 07 2012