This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215294 #26 Feb 19 2025 02:43:07 %S A215294 1,3,6,30,70,420,1050,6930,18018,126126,336336,2450448,6651216, %T A215294 49884120,137181330,1051723530,2921454250,22787343150,63804560820, %U A215294 504636071940,1422156202740,11377249621920,32235540595440,260363981732400 %N A215294 Number of permutations of 0..floor((n*3-2)/2) on odd squares of an n X 3 array such that each row and column of odd squares is increasing. %C A215294 a(n) is number of symmetric standard Young tableaux of shape (n,n,n). - _Ran Pan_, May 21 2015 %H A215294 R. H. Hardin, <a href="/A215294/b215294.txt">Table of n, a(n) for n = 1..210</a> %H A215294 Ran Pan, <a href="http://www.math.ucsd.edu/~projectp/problems/p4.html">Problem 4</a>, Project P. %F A215294 a(n) = A060854(1,f3)*A060854(2,f4)*binomial(1*f3+2*f4,1*f3) where f3 = floor((n+1)/2), f4 = floor(n/2). %F A215294 a(n) = e(n) if n even otherwise o(n), where e(n) = 6*Gamma((3*n)/2)/((2 + n)*Gamma(1 + n/2)^2*Gamma(n/2)) and o(n) = (1 + n)*Gamma(1/2 + (3*n)/2)/(2*Gamma((3 + n)/2)^3). - _Peter Luschny_, Sep 30 2018 %e A215294 Some solutions for n=5: %e A215294 x 1 x x 0 x x 0 x x 4 x x 0 x x 1 x x 1 x %e A215294 0 x 5 2 x 4 2 x 5 0 x 2 1 x 2 0 x 5 0 x 3 %e A215294 x 3 x x 1 x x 1 x x 5 x x 3 x x 2 x x 2 x %e A215294 2 x 6 3 x 6 3 x 6 1 x 3 4 x 6 3 x 6 4 x 5 %e A215294 x 4 x x 5 x x 4 x x 6 x x 5 x x 4 x x 6 x %p A215294 a := n -> `if`(irem(n, 2) = 0, ((1/2)*n+1)*factorial((3/2)*n)/ (factorial((1/2)*n+1)^2*factorial((1/2)*n)), factorial((3/2)*n+3/2)/ (factorial((1/2)*n+1/2)^3*((9/2)*n+3/2))): # _Peter Luschny_, Sep 30 2018 %Y A215294 Column 3 of A215297. %Y A215294 Cf. A060693. %K A215294 nonn %O A215294 1,2 %A A215294 _R. H. Hardin_, Aug 07 2012