cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215295 Number of permutations of 0..floor((n*5-2)/2) on odd squares of an nX5 array such that each row and column of odd squares is increasing.

Original entry on oeis.org

1, 10, 70, 2100, 23100, 1051050, 14294280, 814773960, 12547518984, 824551247520, 13781785137120, 999179422441200, 17699749768958400, 1379105502831342000, 25513451802379827000, 2100607531729272423000, 40191624107086745693400
Offset: 1

Views

Author

R. H. Hardin Aug 07 2012

Keywords

Comments

Column 5 of A215297

Examples

			Some solutions for n=5
..x..2..x..6..x....x..1..x..5..x....x..0..x..5..x....x..0..x..2..x
..0..x..3..x..4....0..x..2..x..7....2..x..4..x.10....3..x..6..x..8
..x..5..x.10..x....x..3..x..9..x....x..1..x..8..x....x..1..x..7..x
..1..x..7..x..8....4..x..6..x.11....6..x..7..x.11....4..x..9..x.11
..x..9..x.11..x....x..8..x.10..x....x..3..x..9..x....x..5..x.10..x
		

Formula

f3=floor((n+1)/2)
f4=floor(n/2)
a(n) = A060854(2,f3)*A060854(3,f4)*binomial(2*f3+3*f4,2*f3)