This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215331 #12 Jun 17 2019 05:46:55 %S A215331 1,5,9,16,35,76,190,455,1156,2911,7438,18992,48902,125968,325975, %T A215331 845202,2197690,5725854,14951308,39110371,102490649,269002564, %U A215331 707096093,1861183847,4905172383,12942843424 %N A215331 Smooth necklaces with 5 colors. %C A215331 We call a necklace (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n. %e A215331 The smooth pre-necklaces, necklaces (N), and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", "3", and "4") are: %e A215331 .... 1 . N %e A215331 ...1 4 ...1 N L %e A215331 ..1. 3 .1. %e A215331 ..11 4 ..11 N L %e A215331 ..12 4 ..12 N L %e A215331 .1.1 2 .1 N %e A215331 .11. 3 11. %e A215331 .111 4 .111 N L %e A215331 .112 4 .112 N L %e A215331 .121 4 .121 N L %e A215331 .122 4 .122 N L %e A215331 .123 4 .123 N L %e A215331 1111 1 1 N %e A215331 1112 4 1112 N L %e A215331 1121 3 121 %e A215331 1122 4 1122 N L %e A215331 1123 4 1123 N L %e A215331 1212 2 12 N %e A215331 1221 3 221 %e A215331 1222 4 1222 N L %e A215331 1223 4 1223 N L %e A215331 1232 4 1232 N L %e A215331 1233 4 1233 N L %e A215331 1234 4 1234 N L %e A215331 2222 1 2 N %e A215331 2223 4 2223 N L %e A215331 2232 3 232 %e A215331 2233 4 2233 N L %e A215331 2234 4 2234 N L %e A215331 2323 2 23 N %e A215331 2332 3 332 %e A215331 2333 4 2333 N L %e A215331 2334 4 2334 N L %e A215331 2343 4 2343 N L %e A215331 2344 4 2344 N L %e A215331 3333 1 3 N %e A215331 3334 4 3334 N L %e A215331 3343 3 343 %e A215331 3344 4 3344 N L %e A215331 3434 2 34 N %e A215331 3443 3 443 %e A215331 3444 4 3444 N L %e A215331 4444 1 4 N %e A215331 There are 43 pre-necklaces, 35 necklaces, and 26 Lyndon words. %e A215331 So a(4) = 35. %Y A215331 Cf. A215327 (smooth necklaces, 3 colors) A215328 (smooth Lyndon words, 3 colors). %K A215331 nonn,more %O A215331 0,2 %A A215331 _Joerg Arndt_, Aug 08 2012 %E A215331 More terms from _Joerg Arndt_, Jun 17 2019