A215335 Cyclically smooth Lyndon words with 3 colors.
3, 2, 4, 7, 16, 30, 68, 140, 308, 664, 1476, 3248, 7280, 16286, 36768, 83160, 189120, 431046, 986244, 2261616, 5200776, 11984382, 27676612, 64031520, 148406224, 344500520, 800902564, 1864486560, 4346071600, 10142581552, 23696518916, 55420651440, 129742921992, 304014466080, 712985901856, 1673486122000
Offset: 1
Keywords
Examples
The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 3 colors (using symbols ".", "1", and "2") are: .... 1 . N ...1 4 ...1 N L ..11 4 ..11 N L .1.1 2 .1 N .111 4 .111 N L .121 4 .121 N L 1111 1 1 N 1112 4 1112 N L 1122 4 1122 N L 1212 2 12 N 1222 4 1222 N L 2222 1 2 N There are 12 necklaces (so A208772(4)=12) and a(4)=7 Lyndon words.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Latham Boyle, Paul J. Steinhardt, Self-Similar One-Dimensional Quasilattices, arXiv preprint arXiv:1608.08220 [math-ph], 2016.
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Crossrefs
Programs
-
Mathematica
terms = 40; sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}]; vn = Table[Round[sn[n, 3]], {n, terms}]; vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
PARI
default(realprecision,99); /* using floats */ sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); vn=vector(66,n, round(sn(n,3)) ); /* necklaces */ /* Lyndon words, via Moebius inversion: */ vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))
Formula
a(n) = sum_{ d divides n } moebius(n/d) * A208772(d).
Comments