This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A215336 #13 Jul 22 2018 10:44:25 %S A215336 4,3,6,11,26,52,124,275,648,1511,3618,8635,20920,50758,124114,304425, %T A215336 750330,1854716,4600692,11441298,28528484,71290791,178529666, %U A215336 447914775,1125756830,2833896220,7144466184,18036398490,45591671450,115381759707,292329164908,741410952975,1882219946418,4782782372655,12163730636096 %N A215336 Cyclically smooth Lyndon words with 4 colors. %C A215336 We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1. %H A215336 Vincenzo Librandi, <a href="/A215336/b215336.txt">Table of n, a(n) for n = 1..200</a> %H A215336 Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, <a href="http://arxiv.org/abs/0809.0551">Smooth words and Chebyshev polynomials</a>, arXiv:0809.0551 [math.CO], 2008. %F A215336 a(n) = sum_{ d divides n } moebius(n/d) * A208773(d). %e A215336 The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", and "3") are: %e A215336 .... 1 . N %e A215336 ...1 4 ...1 N L %e A215336 ..11 4 ..11 N L %e A215336 .1.1 2 .1 N %e A215336 .111 4 .111 N L %e A215336 .121 4 .121 N L %e A215336 1111 1 1 N %e A215336 1112 4 1112 N L %e A215336 1122 4 1122 N L %e A215336 1212 2 12 N %e A215336 1222 4 1222 N L %e A215336 1232 4 1232 N L %e A215336 2222 1 2 N %e A215336 2223 4 2223 N L %e A215336 2233 4 2233 N L %e A215336 2323 2 23 N %e A215336 2333 4 2333 N L %e A215336 3333 1 3 N %e A215336 There are 18 necklaces (so A208773(4)=24) and a(4)=11 Lyndon words. %t A215336 terms = 40; %t A215336 sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}]; %t A215336 vn = Table[Round[sn[n, 4]], {n, terms}]; %t A215336 vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* _Jean-François Alcover_, Jul 22 2018, after _Joerg Arndt_ *) %o A215336 (PARI) %o A215336 default(realprecision,99); /* using floats */ %o A215336 sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); %o A215336 vn=vector(66,n, round(sn(n,4)) ); /* necklaces */ %o A215336 /* Lyndon words, via Moebius inversion: */ %o A215336 vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d])) %Y A215336 Cf. A208773 (cyclically smooth necklaces, 4 colors). %Y A215336 Cf. A215329 (smooth necklaces, 4 colors), A215330 (smooth Lyndon words, 4 colors). %K A215336 nonn %O A215336 1,1 %A A215336 _Joerg Arndt_, Aug 13 2012